LeetCode Python - 70. 爬楼梯


题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

解法

方法一:递推

我们定义 f[i] 表示爬到第 i 阶楼梯的方法数,那么 f[i] 可以由 f[i−1] 和 f[i−2] 转移而来,即:f[i]=f[i−1]+f[i−2]

初始条件为 f[0]=1,f[1]=1,即爬到第 0 阶楼梯的方法数为 1,爬到第 1 阶楼梯的方法数也为 1。

答案即为 f[n]。

由于 f[i] 只与 f[i−1] 和 f[i−2] 有关,因此我们可以只用两个变量 a 和 b 来维护当前的方法数,空间复杂度降低为 O(1)。

时间复杂度 O(n),空间复杂度 O(1)。

class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        a, b = 0, 1
        for _ in range(n):
            a, b = b, a + b
        return b

方法二:矩阵快速幂加速递推

我们设 Fib(n) 表示一个 1×2 的矩阵 [ Fn Fn−1 ],其中 Fn 和 Fn−1 分别是第 n 个和第 n−1 个斐波那契数。

我们希望根据 Fib(n−1)= [ Fn-1 Fn−2 ] 推出 Fib(n)。也即是说,我们需要一个矩阵 base,使得 Fib(n−1)×base=Fib(n),即:[ Fn-1 Fn−2 ] × base = [ Fn Fn−1 ]

由于 Fn = Fn-1 + Fn−2 ,所以矩阵 base 的第一列为:[ 1 1 ]

第二列为:[ 1 0 ]

因此有:[ Fn-1 Fn−2 ] × [ 1 1 1 0 ] = [ Fn Fn−1 ]

我们定义初始矩阵 res=[ 1 1 ],那么 Fn 等于 res 乘以 base n−1 的结果矩阵中第一行的第一个元素。使用矩阵快速幂求解即可。

时间复杂度 O(logn),空间复杂度 O(1)。

class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        def mul(a, b) :
            m, n = len(a), len(b[0])
            c = [[0] * n for _ in range(m)]
            for i in range(m):
                for j in range(n):
                    for k in range(len(a[0])):
                        c[i][j] = c[i][j] + a[i][k] * b[k][j]
            return c

        def pow(a, n) :
            res = [[1, 1]]
            while n:
                if n & 1:
                    res = mul(res, a)
                n >>= 1
                a = mul(a, a)
            return res

        a = [[1, 1], [1, 0]]
        return pow(a, n - 1)[0][0]

方法三

import numpy as np


class Solution(object):
    def climbStairs(self, n):
        """
        :type n: int
        :rtype: int
        """
        res = np.mat([(1, 1)], np.dtype("O"))
        factor = np.mat([(1, 1), (1, 0)], np.dtype("O"))
        n -= 1
        while n:
            if n & 1:
                res *= factor
            factor *= factor
            n >>= 1
        return res[0, 0]

运行结果

方法一

在这里插入图片描述

方法二

在这里插入图片描述

方法三

在这里插入图片描述

  • 11
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuxu1116

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值