ChatGPT进行文本分类

1.建立客户端

from openai import OpenAI
client = OpenAI(
        base_url="https://api.chatanywhere.tech/v1"
)

2.建立相关函数

def get_openai_response(client, system_prompt, user_prompt, model="gpt-3.5-turbo"):
    response = client.chat.completions.create(
        model=model,
        messages=[
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": user_prompt}
        ],
    )
    return response.choices[0].message.content

3.设置分类文本

q1 = "我刚买的XYZ智能手表无法同步我的日历,我应该怎么办?"
q2 = "XYZ手表的电池可以持续多久?"
q3 = "XYZ品牌的手表和ABC品牌的手表相比,有什么特别的功能吗?"
q4 = "安装XYZ智能手表的软件更新后,手表变得很慢,这是啥原因?"
q5 = "XYZ智能手表防水不?我可以用它来记录我的游泳数据吗?"
q6 = "我想知道XYZ手表的屏幕是什么材质,容不容易刮花?"
q7 = "请问XYZ手表标准版和豪华版的售价分别是多少?还有没有进行中的促销活动?"
q_list = [q1, q2, q3, q4, q5, q6, q7]

4.设置类别

category_list = ["产品规格", "使用咨询", "功能比较", "用户反馈", "价格查询", "故障问题", "其它"]

5.设置提示模板

classify_prompt_template = """
你的任务是为用户对产品的疑问进行分类。
请仔细阅读用户的问题内容,给出所属类别。类别应该是这些里面的其中一个:{categories}。
直接输出所属类别,不要有任何额外的描述或补充内容。
用户的问题内容会以三个#符号进行包围。

###
{question}
###
"""

6.分类

for q in q_list:
    formatted_prompt = classify_prompt_template.format(categories=",".join(category_list), question=q)
    response = get_openai_response(client, formatted_prompt)
    print(response)

输出:
故障问题
产品规格
功能比较
故障问题
产品规格
产品规格
价格查询

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值