Spark SQL-编程

1.SparkSession新的起点

        在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。

       SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContext和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了sparkContext,所以计算实际上是由sparkContext完成的。

2.DataFrame

       在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换;还可以从Hive Table进行查询返回。

2.1 从Spark数据源进行创建

(1)查看Spark数据源进行创建的文件格式

scala> spark.read.

csv   format   jdbc   json   load   option   options   orc   parquet   schema   table   text   textFile

(2)读取json文件创建DataFrame

scala> val df = spark.read.json("/apps/spark/examples/src/main/resources/people.json")

df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

(3)展示结果

scala> df.show

+----+-------+

| age|   name|

+----+-------+

|null|Michael|

|  30|   Andy|

|  19| Justin|

+----+-------+
import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}

object Spark_Sql_Demo {

  def main(args: Array[String]): Unit = {
    //1.编写sparksql的conf
    val sparkConf : SparkConf = new SparkConf().setAppName("Spark_Sql_Demo") .setMaster("local[*]")

    //2.创建sparksql
    val spark: SparkSession = SparkSession.builder().config(sparkConf).getOrCreate()
    //3.读取数据
    val df: DataFrame = spark.read.json("in/user.json")
    //4.展示
    df.show()
    //5.释放资源
    spark.stop()
  }
}

从RDD进行转换

详情请见5

从Hive Table进行查询返回

详情请见5下篇博客

2.2 SQL风格语法

1)创建一个DataFrame

scala> val df = spark.read.json("/apps/spark/examples/src/main/resources/people.json")

df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

2)对DataFrame创建一个临时表

scala> df.createOrReplaceTempView("people")

3)通过SQL语句实现查询全表

scala> val sqlDF = spark.sql("SELECT * FROM people")

sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

4)结果展示

scala> sqlDF.show

+----+-------+

| age|   name|

+----+-------+

|null|Michael|

|  30|   Andy|

|  19| Justin|

+----+-------+

注意:临时表是Session范围内的,Session退出后,表就失效了。如果想应用范围内有效,可以使用全局表。注意使用全局表时需要全路径访问,如:global_temp.people

5)对于DataFrame创建一个全局表

scala> df.createGlobalTempView("people")

6)通过SQL语句实现查询全表

scala> spark.sql("SELECT * FROM global_temp.people").show()

+----+-------+

| age|   name|

+----+-------+

|null|Michael|

|  30|   Andy|

|  19| Justin|



scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()

+----+-------+

| age|   name|

+----+-------+

|null|Michael|

|  30|   Andy|

|  19| Justin|

+----+-------+

2.3 DSL风格语法

1)创建一个DateFrame

scala> spark.read.

csv   format   jdbc   json   load   option   options   orc   parquet   schema   table   text   textFile

2)查看DataFrame的Schema信息

scala> df.printSchema

root

 |-- age: long (nullable = true)

 |-- name: string (nullable = true)

3)只查看”name”列数据

scala> df.select("name").show()

+-------+

|   name|

+-------+

|Michael|

|   Andy|

| Justin|

+-------+

4)查看”name”列数据以及”age+1”数据

scala> df.select($"name", $"age" + 1).show()

+-------+---------+

|   name|(age + 1)|

+-------+---------+

|Michael|     null|

|   Andy|       31|

| Justin|       20|

+-------+---------+

5)查看”age”大于”21”的数据

scala> df.filter($"age" > 21).show()

+---+----+

|age|name|

+---+----+

| 30|Andy|

+---+----+

6)按照”age”分组,查看数据条数

scala> df.groupBy("age").count().show()

+----+-----+

| age|count|

+----+-----+

|  19|     1|

|null|     1|

|  30|     1|

+----+-----+

2.4 RDD转换为DateFrame

      注意:如果需要RDD与DF或者DS之间操作,那么都需要引入 import spark.implicits._  

    【spark不是包名,而是sparkSession对象的名称

      前置条件:导入隐式转换并创建一个RDD

scala> import spark.implicits._

import spark.implicits._
scala> val peopleRDD = sc.textFile("examples/src/main/resources/people.txt")

peopleRDD: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at <console>:27

1)通过手动确定转换

scala> peopleRDD.map{x=>val para = x.split(",");(para(0),para(1).trim.toInt)}.toDF("name","age")

res1: org.apache.spark.sql.DataFrame = [name: string, age: int]

2)通过反射确定(需要用到样例类)

(1)创建一个样例类

scala> case class People(name:String, age:Int)

(2)根据样例类将RDD转换为DataFrame

scala> peopleRDD.map{ x => val para = x.split(",");People(para(0),para(1).trim.toInt)}.toDF

res2: org.apache.spark.sql.DataFrame = [name: string, age: int]

3)通过编程的方式(了解)

(1)导入所需的类型

scala> import org.apache.spark.sql.types._

import org.apache.spark.sql.types._

(2)创建Schema

scala> val structType: StructType = StructType(StructField("name", StringType) :: StructField("age", IntegerType) :: Nil)

structType: org.apache.spark.sql.types.StructType = StructType(StructField(name,StringType,true), StructField(age,IntegerType,true))

(3)导入所需的类型

scala> import org.apache.spark.sql.Row

import org.apache.spark.sql.Row

(4)根据给定的类型创建二元组RDD

scala> val data = peopleRDD.map{ x => val para = x.split(",");Row(para(0),para(1).trim.toInt)}

data: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[6] at map at <console>:33

(5)根据数据及给定的schema创建DataFrame

scala> val dataFrame = spark.createDataFrame(data, structType)

dataFrame: org.apache.spark.sql.DataFrame = [name: string, age: int]

 2.5 DateFrame转换为RDD 

      直接调用rdd即可

1)创建一个DataFrame

scala> val df = spark.read.json("/apps/spark/examples/src/main/resources/people.json")

df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

2)将DataFrame转换为RDD

scala> val dfToRDD = df.rdd

dfToRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[19] at rdd at <console>:29

3)打印RDD

scala> dfToRDD.collect

res13: Array[org.apache.spark.sql.Row] = Array([Michael, 29], [Andy, 30], [Justin, 19])

3 DataSet

Dataset是具有强类型的数据集合,需要提供对应的类型信息。

3.1 创建

(1)创建一个样例类

scala> case class Person(name: String, age: Long)

defined class Person

(2)创建DataSet

scala> val caseClassDS = Seq(Person("Andy", 32)).toDS()

caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

 3.2 RDD转换为DataSet 

      SparkSQL能够自动将包含有case类的RDD转换成DataFrame,case类定义了table的结构,case类属性通过反射变成了表的列名。

(1)创建一个RDD

scala> val peopleRDD = sc.textFile("examples/src/main/resources/people.txt")

peopleRDD: org.apache.spark.rdd.RDD[String] = examples/src/main/resources/people.txt MapPartitionsRDD[3] at textFile at <console>:27

(2)创建一个样例类

scala> case class Person(name: String, age: Long)

defined class Person

(3)将RDD转化为DataSet

scala> peopleRDD.map(line => {val para = line.split(",");Person(para(0),para(1).trim.toInt)}).toDS()

3.3 DataSet转换为RDD

      调用rdd方法即可。

(1)创建一个DataSet

scala> val DS = Seq(Person("Andy", 32)).toDS()

DS: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

(2)将DataSet转换为RDD

scala> DS.rdd

res11: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[15] at rdd at <console>:28

 4 DataFrame与DataSet的互操作 

4.1. DataFrame转换为DataSet

(1)创建一个DateFrame

scala> val df = spark.read.json("examples/src/main/resources/people.json")

df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]

(2)创建一个样例类

scala> case class Person(name: String, age: Long)

defined class Person

(3)将DateFrame转化为DataSet

scala> df.as[Person]

res14: org.apache.spark.sql.Dataset[Person] = [age: bigint, name: string]

4.2 DataSet转换为DataFrame

(1)创建一个样例类

scala> case class Person(name: String, age: Long)

defined class Person

(2)创建DataSet

scala> val ds = Seq(Person("Andy", 32)).toDS()

ds: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]

(3)将DataSet转化为DataFrame

scala> val df = ds.toDF

df: org.apache.spark.sql.DataFrame = [name: string, age: bigint]

(4)展示

scala> df.show

+----+---+

|name|age|

+----+---+

|Andy| 32|

+----+---+

 4.3 DataSet转DataFrame 

   这个很简单,因为只是把case class封装成Row

(1)导入隐式转换

import spark.implicits._

(2)转换

val testDF = testDS.toDF

 4.4 DataFrame转DataSet 

(1)导入隐式转换

import spark.implicits._

(2)创建样例类

case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型

(3)转换

val testDS = testDF.as[Coltest]

       这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便。在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用。

5. RDD、DataFrame、DataSet

      在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)

     如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。

     在后期的Spark版本中,DataSet会逐步取代RDD和DataFrame成为唯一的API接口。

5.1 三者的共性

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利

2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算。

3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出。

4、三者都有partition的概念

5、三者有许多共同的函数,如filter,排序等

6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持 import spark.implicits._

7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型
DataFrame:
testDF.map{
      case Row(col1:String,col2:Int)=>
        println(col1);println(col2)
        col1
      case _=>
       ""
    }
Dataset:
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
    testDS.map{
      case Coltest(col1:String,col2:Int)=>
        println(col1);println(col2)
        col1
      case _=>
        ""
    }

5.2 三者的区别

(1)RDD

RDD一般和spark mlib同时使用

RDD不支持sparksql操作

(2)DataFrame:

 a. 与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值,如:

testDF.foreach{

  line =>

    val col1=line.getAs[String]("col1")

    val col2=line.getAs[String]("col2")

}

b. DataFrame与Dataset一般不与spark mlib同时使用

c. DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作,如:

dataDF.createOrReplaceTempView("tmp")

spark.sql("select  ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)

d. DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然

//保存

val saveoptions = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://hadoop102:9000/test")

datawDF.write.format("com.atguigu.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()

//读取

val options = Map("header" -> "true", "delimiter" -> "\t", "path" -> "hdfs://hadoop102:9000/test")

val datarDF= spark.read.options(options).format("com.atguigu.spark.csv").load()

利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定。

5.3. Dataset:

(1)Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。

(2)DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段。而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息

case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型

/**

 rdd

 ("a", 1)

 ("b", 1)

 ("a", 1)

**/

val test: Dataset[Coltest]=rdd.map{line=>

      Coltest(line._1,line._2)

    }.toDS

test.map{

      line=>

        println(line.col1)

        println(line.col2)

    }

        可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题

5.4 IDEA创建SparkSQL程序

IDEA中程序的打包和运行方式都和SparkCore类似,Maven依赖中需要添加新的依赖项:

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.11</artifactId>
    <version>2.1.1</version>
</dependency>

程序如下:

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object Spark_Sql_Transform {

  def main(args: Array[String]): Unit = {
    //1.编写sparksql的conf
    val sparkConf: SparkConf = new SparkConf().setAppName("Spark_Sql_Demo").setMaster("local[*]")

    //2.创建sparksql
    val spark: SparkSession = SparkSession.builder().config(sparkConf).getOrCreate()
    //导入隐式转换,使得RDD可转换为DataFrame
    import spark.implicits._
    //3.创建RDD
    val listRDD: RDD[(Int, String, Int)] = spark.sparkContext.makeRDD(List((1, "zhangsan", 10), (2, "lisi", 20), (3, "wangwu", 30)))
    //4.转化成DF
    val df: DataFrame = listRDD.toDF("id", "name", "age")
    //5.转化成DS
    val ds: Dataset[User] = df.as[User]
    //6.转化成DF
    val df1: DataFrame = ds.toDF()
    //6.转化成RDD
    val rdd: RDD[Row] = df1.rdd
    //7.遍历数据
    rdd.foreach{
      row =>
        row.getString(1).foreach(println)
    }
    //5.释放资源
    spark.stop()
  }
}

case class User(id: Int, name: String, age: Int)

5.5 用户自定义UDF函数


import org.apache.spark.SparkConf
import org.apache.spark.sql.expressions.{Aggregator, UserDefinedAggregateFunction, UserDefinedFunction}
import org.apache.spark.sql.{DataFrame, Dataset, Encoder, Encoders, SparkSession}

object Spark_Sql_UDF {
  def main(args: Array[String]): Unit = {
    /**
      * 自定义函数,在sql中使用
      */
    //设置spark环境
    val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("Spark_Sql_UDF")
    //构建sparksession
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
    import spark.implicits._
    //执行语句
    val df: DataFrame = spark.read.json("")
    //创建临时表
    //df.createOrReplaceTempView("user")
    //转化为ds
    val ds: Dataset[UserBean] = df.as[UserBean]
    //用sparksql进行查询
    //spark.sql("select * from user")
    //
    spark.udf.register("avg",AvgAge)
    ds.select("age")
    //
  }
}
case class UserBean(id : Int,name : String,age:Long)
case class AvgAge(var sum : Long,var count : Int)
//编写自定义方法类
object MyAvg extends  Aggregator[UserBean,AvgAge,Double] {
  //对数据进行初始化操作
  override def zero: AvgAge = {
    new AvgAge(0L,0)
  }
  //对数据进行聚合
  override def reduce(b: AvgAge, a: UserBean): AvgAge ={
      b.sum += a.age
      b.count += 1
      b
  }
  //不同的executor计算的结果进行合并
  override def merge(b1: AvgAge, b2: AvgAge): AvgAge = {
    b1.sum = b1.sum + b2.sum
    b1.count = b1.count + b2.count
    b1
  }
  //最终计算的结构
  override def finish(reduction: AvgAge): Double = {
    reduction.sum.toDouble / reduction.count
  }
  // 设定之间值类型的编码器,要转换成case类
  override def bufferEncoder: Encoder[AvgAge] = Encoders.product

  override def outputEncoder: Encoder[Double] = Encoders.scalaDouble

}

5.6用户自定义聚合函数

       强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数, 如 count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。

       弱类型用户自定义聚合函数:通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。下面展示一个求平均工资的自定义聚合函数。

import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession

object MyAverage extends UserDefinedAggregateFunction {
// 聚合函数输入参数的数据类型 
def inputSchema: StructType = StructType(StructField("inputColumn", LongType) :: Nil)
// 聚合缓冲区中值得数据类型
def bufferSchema: StructType = {
StructType(StructField("sum", LongType) :: StructField("count", LongType) :: Nil)
}
// 返回值的数据类型 
def dataType: DataType = DoubleType
// 对于相同的输入是否一直返回相同的输出。
def deterministic: Boolean = true
// 初始化
def initialize(buffer: MutableAggregationBuffer): Unit = {

// 存工资的总额
buffer(0) = 0L

// 存工资的个数
buffer(1) = 0L
}
// 相同Execute间的数据合并。 
def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
if (!input.isNullAt(0)) {
buffer(0) = buffer.getLong(0) + input.getLong(0)
buffer(1) = buffer.getLong(1) + 1
}
}
// 不同Execute间的数据合并 
def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
}
// 计算最终结果

def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}

// 注册函数
spark.udf.register("myAverage", MyAverage)

val df = spark.read.json("examples/src/main/resources/employees.json")
df.createOrReplaceTempView("employees")
df.show()
// +-------+------+
// |   name|salary|
// +-------+------+
// |Michael|  3000|
// |   Andy|  4500|
// | Justin|  3500|
// |  Berta|  4000|
// +-------+------+

val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees")
result.show()
// +--------------+
// |average_salary|
// +--------------+
// |        3750.0|
// +--------------+

强类型用户自定义聚合函数:通过继承Aggregator来实现强类型自定义聚合函数,同样是求平均工资

import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.Encoder
import org.apache.spark.sql.Encoders
import org.apache.spark.sql.SparkSession
// 既然是强类型,可能有case类
case class Employee(name: String, salary: Long)
case class Average(var sum: Long, var count: Long)

object MyAverage extends Aggregator[Employee, Average, Double] {
// 定义一个数据结构,保存工资总数和工资总个数,初始都为0
def zero: Average = Average(0L, 0L)
// Combine two values to produce a new value. For performance, the function may modify `buffer`
// and return it instead of constructing a new object
def reduce(buffer: Average, employee: Employee): Average = {
buffer.sum += employee.salary
buffer.count += 1
buffer
}
// 聚合不同execute的结果
def merge(b1: Average, b2: Average): Average = {
b1.sum += b2.sum
b1.count += b2.count
b1
}
// 计算输出
def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count
// 设定之间值类型的编码器,要转换成case类

// Encoders.product是进行scala元组和case类转换的编码器 
def bufferEncoder: Encoder[Average] = Encoders.product
// 设定最终输出值的编码器
def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

import spark.implicits._


val ds = spark.read.json("examples/src/main/resources/employees.json").as[Employee]
ds.show()
// +-------+------+
// |   name|salary|
// +-------+------+
// |Michael|  3000|
// |   Andy|  4500|
// | Justin|  3500|
// |  Berta|  4000|
// +-------+------+

// Convert the function to a `TypedColumn` and give it a name
val averageSalary = MyAverage.toColumn.name("average_salary")
val result = ds.select(averageSalary)
result.show()
// +--------------+
// |average_salary|
// +--------------+
// |        3750.0|
// +--------------+

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值