Spark SQL-数据源

一、 通用加载/保存方法

1. 手动指定选项

        Spark SQL的DataFrame接口支持多种数据源的操作。一个DataFrame可以进行RDDs方式的操作,也可以被注册为临时表。把DataFrame注册为临时表之后,就可以对该DataFrame执行SQL查询。

       Spark SQL的默认数据源为Parquet格式。数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作。修改配置项spark.sql.sources.default,可修改默认数据源格式。

val df = spark.read.load("examples/src/main/resources/users.parquet") df.select("name", "favorite_color").write.save("namesAndFavColors.parquet")

       当数据源格式不是parquet格式文件时,需要手动指定数据源的格式。数据源格式需要指定全名(例如:org.apache.spark.sql.parquet),如果数据源格式为内置格式,则只需要指定简称定json, parquet, jdbc, orc, libsvm, csv, text来指定数据的格式。

       可以通过SparkSession提供的read.load方法用于通用加载数据,使用write和save保存数据。 

val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")
peopleDF.write.format("parquet").save("hdfs://hdp-1:9000/namesAndAges.parquet")

       除此之外,可以直接运行SQL在文件上:

val sqlDF = spark.sql("SELECT * FROM parquet.`hdfs://hdp-1:9000/namesAndAges.parquet`")

sqlDF.show()

scala> val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")

peopleDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]



scala> peopleDF.write.format("parquet").save("hdfs://hdp-1:9000/namesAndAges.parquet")



scala> peopleDF.show()

+----+-------+

| age|   name|

+----+-------+

|null|Michael|

|  30|   Andy|

|  19| Justin|

+----+-------+



scala> val sqlDF = spark.sql("SELECT * FROM parquet.`hdfs:// hdp-1:9000/namesAndAges.parquet`")

17/09/05 04:21:11 WARN ObjectStore: Failed to get database parquet, returning NoSuchObjectException

sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]



scala> sqlDF.show()

+----+-------+

| age|   name|

+----+-------+

|null|Michael|

|  30|   Andy|

|  19| Justin|

+----+-------+

2. 文件保存选项

       可以采用SaveMode执行存储操作,SaveMode定义了对数据的处理模式。需要注意的是,这些保存模式不使用任何锁定,不是原子操作。此外,当使用Overwrite方式执行时,在输出新数据之前原数据就已经被删除。SaveMode详细介绍如下表:

 

Scala/Java

Any Language

Meaning

SaveMode.ErrorIfExists(default)

"error"(default)

如果文件存在,则报错

SaveMode.Append

"append"

追加

SaveMode.Overwrite

"overwrite"

覆写

SaveMode.Ignore

"ignore"

数据存在,则忽略

3. JSON文件

        Spark SQL 能够自动推测 JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载一个 一个JSON 文件。

注意:这个JSON文件不是一个传统的JSON文件,每一行都得是一个JSON串。

{"name":"Michael"}

{"name":"Andy", "age":30}

{"name":"Justin", "age":19}



// Primitive types (Int, String, etc) and Product types (case classes) encoders are
// supported by importing this when creating a Dataset.
import spark.implicits._

// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files
val path = "examples/src/main/resources/people.json"
val peopleDF = spark.read.json(path)

// The inferred schema can be visualized using the printSchema() method
peopleDF.printSchema()
// root
//  |-- age: long (nullable = true)
//  |-- name: string (nullable = true)

// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")

// SQL statements can be run by using the sql methods provided by spark
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
// +------+
// |  name|
// +------+
// |Justin|
// +------+

// Alternatively, a DataFrame can be created for a JSON dataset represented by
// a Dataset[String] storing one JSON object per string
val otherPeopleDataset = spark.createDataset(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherPeople = spark.read.json(otherPeopleDataset)
otherPeople.show()
// +---------------+----+
// |        address|name|
// +---------------+----+
// |[Columbus,Ohio]| Yin|

4. Parquet文件

         Parquet是一种流行的列式存储格式,可以高效地存储具有嵌套字段的记录。Parquet格式经常在Hadoop生态圈中被使用,它也支持Spark SQL的全部数据类型。Spark SQL 提供了直接读取和存储 Parquet 格式文件的方法。

importing spark.implicits._
import spark.implicits._

val peopleDF = spark.read.json("examples/src/main/resources/people.json")

peopleDF.write.parquet("hdfs://hadoop102:9000/people.parquet")

val parquetFileDF = spark.read.parquet("hdfs:// hadoop102:9000/people.parquet")

parquetFileDF.createOrReplaceTempView("parquetFile")


val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
namesDF.map(attributes => "Name: " + attributes(0)).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

5. JDBC

       Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。

注意:需要将相关的数据库驱动放到spark的类路径下

(1)启动spark-shell

$ bin/spark-shell

(2)从Mysql数据库加载数据方式一

val jdbcDF = spark.read

.format("jdbc")

.option("url", "jdbc:mysql://hdp-1:3306/rdd")

.option("dbtable", "rddtable")

.option("user", "root")

.option("password", "root")

.load()

(3)从Mysql数据库加载数据方式二

val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "root")
val jdbcDF2 = spark.read
.jdbc("jdbc:mysql://hdp-1:3306/rdd", "rddtable", connectionProperties)

(4)将数据写入Mysql方式一

jdbcDF.write
.format("jdbc")
.option("url", "jdbc:mysql://hdp-1:3306/rdd")
.option("dbtable", "dftable")
.option("user", "root")
.option("password", "root")
.save()

(5)将数据写入Mysql方式二

jdbcDF2.write
.jdbc("jdbc:mysql://hdp-1:3306/rdd", "db", connectionProperties)

(6)Idea的方式读取数据库数据

import org.apache.spark.SparkConf
import org.apache.spark.sql.{DataFrame, SparkSession}
//读取数据库中的数据
object Spark_Sql_JDBC {

  def main(args: Array[String]): Unit = {
    //配置环境
    val conf: SparkConf = new SparkConf().setAppName("Spark_Sql_JDBC").setMaster("local[*]")
    //创建SparkSql
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()

    //读取数据库中的数据  通过JDBC
    val dF: DataFrame = spark.read
      .format("jdbc")
      .option("user", "root")
      .option("password", "root")
      .option("url", "jdbc:mysql://localhost:3306/frame?characterEncoding=utf8&useSSL=false&serverTimezone=UTC&rewriteBatchedStatements=true")
      .option("dbTable", "school")
      .option("driver","com.mysql.cj.jdbc.Driver")
      .load()
    val selDF: DataFrame = dF.select("name")
    selDF.show()

    spark.stop()

  }
}

 (7)将数据保存到数据库

import java.util.Properties

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, SparkSession}

object Spark_Sql_JDBC_Save {

  def main(args: Array[String]): Unit = {

    val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("Spark_Sql_JDBC_Save")

    val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()

    import sparkSession.implicits._

    val arrayRDD: RDD[(Int, String, Int)] = sparkSession.sparkContext.makeRDD(Array((1,"zhangsan",10),(2,"lisi",20),(3,"wangwu",30)))
    val frame: DataFrame = arrayRDD.toDF("id","name","age")
    val properties = new Properties()
    properties.put("user","root")
    properties.put("password","root")
    properties.put("driver","com.mysql.cj.jdbc.Driver")
    frame.write.jdbc(
      "jdbc:mysql://localhost:3306/frame?characterEncoding=utf8&useSSL=false&serverTimezone=UTC&rewriteBatchedStatements=true",
      "person",
      properties
    )

  }
}

二、 Hive数据库

        Apache Hive是Hadoop上的SQL引擎,Spark SQL编译时可以包含Hive支持,也可以不包含。包含Hive支持的Spark SQL可以支持Hive表访问、UDF(用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在Spark SQL中包含Hive的库,并不需要事先安装Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。

       若要把Spark SQL连接到一个部署好的Hive上,你必须把hive-site.xml复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好Hive,Spark SQL也可以运行。 需要注意的是,如果你没有部署好Hive,Spark SQL会在当前的工作目录中创建出自己的Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。

1. 内嵌Hive应用

       如果要使用内嵌的Hive,什么都不用做,直接用就可以了。

      可以通过添加参数初次指定数据仓库地址:--conf spark.sql.warehouse.dir=hdfs://hdp-1/spark-wearhouse

注意如果你使用的是内部的Hive在Spark2.0之后spark.sql.warehouse.dir用于指定数据仓库的地址如果你需要是用HDFS作为路径那么需要将core-site.xml和hdfs-site.xml 加入到Spark conf目录否则只会创建master节点上的warehouse目录查询时会出现文件找不到的问题这是需要使用HDFS则需要将metastore删除重启集群

2. 外部Hive应用

如果想连接外部已经部署好的Hive,需要通过以下几个步骤。

(1)将Hive中的hive-site.xml拷贝或者软连接到Spark安装目录下的conf目录下。

(2)打开spark shell,注意带上访问Hive元数据库的JDBC客户端

$ bin/spark-shell  --jars mysql-connector-java-8.0.15-bin.jar

3. 运行Spark SQL CLI

Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务。在Spark目录下执行如下命令启动Spark SQL CLI:

./bin/spark-sql

4. 代码中使用Hive

(1)添加依赖:

<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive -->

<dependency>

    <groupId>org.apache.spark</groupId>

    <artifactId>spark-hive_2.11</artifactId>

    <version>2.1.1</version>

</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.hive/hive-exec -->

<dependency>

    <groupId>org.apache.hive</groupId>

    <artifactId>hive-exec</artifactId>

    <version>1.2.1</version>

</dependency>

 

(2)创建SparkSession时需要添加hive支持(.enableHiveSupport())

val warehouseLocation: String = new File("spark-warehouse").getAbsolutePath

val spark = SparkSession
.builder()
.appName("Spark Hive Example")
.config("spark.sql.warehouse.dir", warehouseLocation)
.enableHiveSupport()
.getOrCreate()

注意:val warehouseLocation: String = new File("spark-warehouse").getAbsolutePath   .config("spark.sql.warehouse.dir", warehouseLocation)为使用内置Hive需要指定一个Hive仓库地址。若使用的是外部Hive,则需要将hive-site.xml添加到ClassPath下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值