引出:
为了求解这个式子,我们可以怎么做?
暴力pow?快速幂?
很显然,当b大到一定程度时,利用pow或者快速幂这样的算法是无法在给定时间内求解的,这时我们引入欧拉降幂算法,这个算法的特点就是降低幂方的值而不影响最终结果,使我们解决问题的时间缩短。
结论:
先给出欧拉降幂的公式:
其中 代表欧拉函数值
求解:
欧拉函数在这里不做多介绍了,说简单了就是小于等于n的与n互质的数的个数。
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int MAX=1000100;
ll fastPow(ll a,ll b,ll mod)
{
ll ans=1;
a %= mod;
while(b)
{
if(b&1)
{
ans = (ans*a)%mod;
}
b >>= 1;
a = (a*a)%mod;
}
return ans;
}
ll eulerFunction(ll x)
{
ll eulerNumbers = x;
for(ll i = 2; i*i <= x; i++)
{
if(x % i == 0)
{
eulerNumbers = eulerNumbers / i * (i-1);
while(x % i == 0)
{
x /= i;
}
}
}
if(x > 1)
{
eulerNumbers = eulerNumbers / x * (x-1);
}
return eulerNumbers;
}
ll eulerDropPow(ll a,char b[],ll c)
{
ll eulerNumbers = eulerFunction(c);
ll descendingPower=0;
for(ll i=0,len = strlen(b); i<len; ++i)
{
descendingPower=(descendingPower*10+b[i]-'0') % eulerNumbers;
}
descendingPower += eulerNumbers;
return fastPow(a,descendingPower,c);
}
int main()
{
ll a,c;
char b[MAX];
while(~scanf("%lld%s%lld",&a,b,&c))
{
printf("%lld\n",eulerDropPow(a,b,c));
}
return 0;
}
代码来自学弟粉丝团