欧拉降幂

为什么要降幂:
在这里插入图片描述
什么是欧拉降幂:
在这里插入图片描述
注: φ(c)是欧拉函数;

欧拉降幂怎么实现:

#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int MAX=1000100;
 
//快速幂
ll  fastPow(ll  a,ll b,ll mod) {
	ll ans=1;
	a %= mod;
	while(b) {
		if(b&1) {
			ans = (ans*a)%mod;
		}
		b >>= 1;
		a = (a*a)%mod;
	}
	return ans;
}
 
//欧拉函数
ll  eulerFunction(ll x) {
	ll eulerNumbers = x;
	for(ll i = 2; i*i <= x; i++) {
		if(x % i == 0) {
			eulerNumbers = eulerNumbers / i * (i-1);
			while(x % i == 0) {
				x /= i;
			}
		}
	}
	if(x > 1) {
		eulerNumbers = eulerNumbers / x * (x-1);
	}
	return eulerNumbers;
}
 
//降幂函数
ll eulerDropPow(ll a,char b[],ll c) {
	ll eulerNumbers = eulerFunction(c);
	//存储降了之后的幂 
	ll descendingPower=0;
	for(ll i=0,len = strlen(b); i<len; ++i) {
		descendingPower=(descendingPower*10+b[i]-'0') % eulerNumbers;
	}
	//b mod &(c) + &(c) 
	descendingPower += eulerNumbers;
	return fastPow(a,descendingPower,c);
}
 
 
int main() {
	ll a,c;
	char b[MAX];//降幂函数,因为幂方的值可能巨大,故用char数组储存
	while(~scanf("%lld%s%lld",&a,b,&c)) { // a 的 b 次方对c取模
		printf("%lld\n",eulerDropPow(a,b,c));
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值