- 博客(5)
- 收藏
- 关注
原创 [动手学深度学习PyTorch5]
一 卷积神经网络 二维卷积层 常用于图像处理。二维互相关运算是按元素相乘求和。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。 多输入通道和多输出通道 卷积层的输入和输出都可以包含多个通道 池化 池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对...
2020-02-19 21:34:10 144
原创 [动手学深度学习PyTorch笔记四]
一 机器翻译及相关技术 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 首先进行数据预处理,将数据集清洗、转化为神经网络的输入的minbatch,包括分词、建立字典、载入数据集。 Encoder-Decoder 一种通用模型框架。Encoder:编码...
2020-02-19 20:54:16 277 1
原创 [动手学深度学习PyTorch笔记三]
一 过拟合、欠拟合及其解决方案 欠拟合(underfitting): 一类是模型无法得到较低的训练误差,我们将这一现象称作 过拟合(overfitting):模型的训练误差远小于它在测试数据集上的误差,我们称该现象为。 在实践中,我们要尽可能同时应对欠拟合和过拟合。两个主要影响因素:模型复杂度和训练数据集大小。模型复杂度过低会导致欠拟合,过高则导致过拟合,训练数据集过小容易发生过拟合。因此需选取适...
2020-02-18 20:18:55 320
原创 [动手学深度学习PyTorch笔记2]文本预处理、语言模型、循环神经网络
一、文本预处理 文本可以看作是字符或单词的一种序列数据。对文本的预处理包括: 1.读入文本 2.分词:对每个句子进行分词,将句子划分成若干个词(token),转换为一个词的序列。现有的分词工具有:spaCy和NLTK。 3.建立字典:每个词映射到一个唯一的索引(index),从而将字符串转换为数字。 4.将文本从词的序列转换为索引(数字)的序列,方便输入模型 二、语言模型 一段自然语言文本可以看作...
2020-02-14 18:28:41 251
原创 [动手学深度学习PyTorch笔记1]线性回归、分类模型、多层感知机
//本系列内容为动手学深度学习PyTorch版的学习笔记,内容参考伯禹教育平台 线性回归 要素 模型:线性模型大部分是线性判别模型,判别模型也称为条件模型,是建模预测变量和观测变量之间的关系,分为确定性判别模型和概率判别模型。 线性回归假设输出与各个输入之间是线性关系: y=fθ(x)=θ0+Σj=1dθjxj=θTxy=f_\theta (x)=\theta_0+\Sigma_{j=1}^d {...
2020-02-14 16:28:20 307
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人