【参加CUDA线上训练营】错误检测与事件

一、错误检测

在编写CUDA时会出现各种错误,在运行时刻中的错误更加难以排查,使用错误检测函数可以有效的检测出运行时刻中所存在的错误。函数如下所示:

//预处理指令,确保当前文件在编译中不会重复包含
#pragma once
#include <stdio.h>
//定义函数名为CHECK
#define CHECK(call)                                   \
do                                                    \
{                                                     \
    const cudaError_t error_code = call;              \
    if (error_code != cudaSuccess)                    \
    {                                                 \
        printf("CUDA Error:\n");                      \
        printf("    File:       %s\n", __FILE__);     \
        printf("    Line:       %d\n", __LINE__);     \
        printf("    Error code: %d\n", error_code);   \
        printf("    Error text: %s\n",                \
            cudaGetErrorString(error_code));          \
        exit(1);                                      \
    }                                                 \
} while (0)

在使用该宏函数时,只要将一个CUDA运行时API函数当作参数传入该宏函数即可,如下所示:

CHECK(cudaFree(d_x))

二、事件

在cuda编程中很需要关注的一点是某一个函数的运行时间,根据其运行时间可以计算出加速结果。CUDA event本质上是一个GPU时间戳,这个时间戳是在用户指定的时间点上记录的。由于GPU本身支持记录时间戳,因此就避免了当使用CPU定时器来统计GPU执行时间可能遇到的诸多问题。

计算程序如下所示:

        cudaEvent_t start, stop;
        CHECK(cudaEventCreate(&start));
        CHECK(cudaEventCreate(&stop));
        CHECK(cudaEventRecord(start));
        cudaEventQuery(start);

        //需要检测时间的程序

        CHECK(cudaEventRecord(stop));
        CHECK(cudaEventSynchronize(stop));
        float elapsed_time;
        CHECK(cudaEventElapsedTime(&elapsed_time, start, stop));
        printf("Time = %g ms.\n", elapsed_time);
        CHECK(cudaEventDestroy(start));
        CHECK(cudaEventDestroy(stop));
    

实验实例如下,对核函数gpu_matrix_mult()执行速度进行测试:

#include <stdio.h>
#include <math.h>
#include "error.cuh"

#define BLOCK_SIZE 16

__global__ void gpu_matrix_mult(int *a,int *b, int *c, int m, int n, int k)
{ 
    int row = blockIdx.y * blockDim.y + threadIdx.y; 
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    int sum = 0;
    if( col < k && row < m) 
    {
        for(int i = 0; i < n; i++) 
        {
            sum += a[row * n + i] * b[i * k + col];
        }
        c[row * k + col] = sum;
    }
} 

void cpu_matrix_mult(int *h_a, int *h_b, int *h_result, int m, int n, int k) {
    for (int i = 0; i < m; ++i) 
    {
        for (int j = 0; j < k; ++j) 
        {
            int tmp = 0.0;
            for (int h = 0; h < n; ++h) 
            {
                tmp += h_a[i * n + h] * h_b[h * k + j];
            }
            h_result[i * k + j] = tmp;
        }
    }
}

int main(int argc, char const *argv[])
{
    int m=100;
    int n=100;
    int k=100;

    int *h_a, *h_b, *h_c, *h_cc;
    CHECK(cudaMallocHost((void **) &h_a, sizeof(int)*m*n));
    CHECK(cudaMallocHost((void **) &h_b, sizeof(int)*n*k));
    CHECK(cudaMallocHost((void **) &h_c, sizeof(int)*m*k));
    CHECK(cudaMallocHost((void **) &h_cc, sizeof(int)*m*k));
    
    cudaEvent_t start, stop;
    CHECK(cudaEventCreate(&start));
    CHECK(cudaEventCreate(&stop));


    for (int i = 0; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            h_a[i * n + j] = rand() % 1024;
        }
    }

    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < k; ++j) {
            h_b[i * k + j] = rand() % 1024;
        }
    }

    int *d_a, *d_b, *d_c;
    CHECK(cudaMalloc((void **) &d_a, sizeof(int)*m*n));
    CHECK(cudaMalloc((void **) &d_b, sizeof(int)*n*k));
    CHECK(cudaMalloc((void **) &d_c, sizeof(int)*m*k));


    // copy matrix A and B from host to device memory
    CHECK(cudaMemcpy(d_a, h_a, sizeof(int)*m*n, cudaMemcpyHostToDevice));
    CHECK(cudaMemcpy(d_b, h_b, sizeof(int)*n*k, cudaMemcpyHostToDevice));

    unsigned int grid_rows = (m + BLOCK_SIZE - 1) / BLOCK_SIZE;
    unsigned int grid_cols = (k + BLOCK_SIZE - 1) / BLOCK_SIZE;
    dim3 dimGrid(grid_cols, grid_rows);
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
    
    CHECK(cudaEventRecord(start));
    cudaEventQuery(start);
    gpu_matrix_mult<<<dimGrid, dimBlock>>>(d_a, d_b, d_c, m, n, k);    
    CHECK(cudaEventRecord(stop));
    CHECK(cudaEventSynchronize(stop));
    float elapsed_time;
    CHECK(cudaEventElapsedTime(&elapsed_time, start, stop));
    printf("Time = %g ms.\n", elapsed_time);

     CHECK(cudaEventDestroy(start));
     CHECK(cudaEventDestroy(stop));
    CHECK(cudaMemcpy(h_c, d_c, (sizeof(int)*m*k), cudaMemcpyDeviceToHost));
    //cudaThreadSynchronize();
    

    cpu_matrix_mult(h_a, h_b, h_cc, m, n, k);

    int ok = 1;
    for (int i = 0; i < m; ++i)
    {
        for (int j = 0; j < k; ++j)
        {
            if(fabs(h_cc[i*k + j] - h_c[i*k + j])>(1.0e-10))
            {
                
                ok = 0;
            }
        }
    }

    if(ok)
    {
        printf("Pass!!!\n");
    }
    else
    {
        printf("Error!!!\n");
    }

    // free memory
    CHECK(cudaFree(d_a));
    CHECK(cudaFree(d_b));
    CHECK(cudaFree(d_c));
    CHECK(cudaFreeHost(h_a));
    CHECK(cudaFreeHost(h_b));
    CHECK(cudaFreeHost(h_c));
    return 0;
}

三、总结

在CUDA编程过程中存在两个问题,即如何解决运行过程中的错误和如何对某过程进行测速。通过错误检测和事件的方式,分别解决了相应问题,并进行了实验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值