ML-KNN算法

简单来说,k-紧邻算法采用测量不同特征值之间的距离方法进行分类。

优点:精度高、对异常值不敏感,无数据输入假定。
缺点 :计算复杂度高、空间复杂度高。
使用数据范围 : 数值型和标称型(标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)

工作原理:给定一个样本数据集(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每个数据与所属分类的对应关系。对新输入没有标签的实例,在训练数据集中找到与该实例最邻近的 k 个实例,这 k 个实例的多数属于某个类,就把该输入实例分为这个类。

项目案例1:优化约会网站的配对效果

项目概述

海伦使用约会网站寻找约会对象。经过一段时间之后,她发现曾交往过三种类型的人:

  • 1:不喜欢的人
  • 2:魅力一般的人
  • 3:极具魅力的人

她希望:

  • 不喜欢的人则直接排除掉
  • 工作日与魅力一般的人约会
  • 周末与极具魅力的人约会

现在她收集到了一些约会网站未曾记录的数据信息,这更有助于匹配对象的归类。

实验流程:
Step1:收集数据
海伦把这些约会对象的数据存放在文本文件 datingTestSet2.txt 中,总共有 1000 行。海伦约会的对象主要包含以下 3 种特征:

  • Col1:每年获得的飞行常客里程数
  • Col2:玩视频游戏所耗时间百分比
  • Col3:每周消费的冰淇淋公升数
    Step2:准备数据
    使用 Python 解析文本文件。创建file2metrix函数,以此来处理输入格式问题。该函数的输入文本是 文件名字符串,输出为训练样本矩阵和类标签向量。
    将文本记录转换为 NumPy 的解析程序如下所示:
import numpy as np

def file2matrix(filename):
    """
    Desc:
        导入训练数据
    parameters:
        filename: 数据文件路径
    return:
        数据矩阵 returnMat 和对应的类别 classLabelVector
    """
    fr = open(filename)
    # 获得文件中的数据行的行数
    lines = fr.readlines()
    numberOfLines = len(lines)  # type: int
    # 生成对应的空矩阵
    # 例如:zeros(2,3)就是生成一个 2*3的矩阵,各个位置上全是 0
    returnMat = np.zeros((numberOfLines, 3))  # prepare matrix to return
    classLabelVector = []  # prepare labels return
    index = 0
    for line in lines:
        # str.strip([chars]) --返回已移除字符串头尾指定字符所生成的新字符串
        line = line.strip()#截取掉所有的回车字符
        # 以 '\t' 切割字符串
        listFromLine = line.split('\t')
        # 每列的属性数据
        returnMat[index, :] = listFromLine[0:3]
        # 每列的类别数据,就是 label 标签数据
        classLabelVector.append(int(listFromLine[-1]))
        index += 1
    # 返回数据矩阵returnMat和对应的类别classLabelVector
    return returnMat, classLabelVector

Step3:分析数据
使用 Matplotlib 画二维散点图。

if __name__ == '__main__':
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    color = ['r', 'g', 'b']
    fig = plt.figure()
    ax = fig.add_subplot(311)#将画布分割成3行4列,图像画在从左到右从上到下的第9块
#那第十块怎么办,3410是不行的,可以用另一种方式(3,4,10)
    for i in range(1, 4):
        index = np.where(np.array(datingLabels) == i)
        ax.scatter(datingDataMat[index, 0], datingDataMat[index, 1], c=color[i - 1], label=i)
    plt.xlabel('Col.0')
    plt.ylabel('Col.1')
    plt.legend()
   
    
    bx = fig.add_subplot(312)
                        
    for i in range(1, 4):
        index = np.where(np.array(datingLabels) == i)
        bx.scatter(datingDataMat[index, 0], datingDataMat[index, 2], c=color[i - 1], label=i)
    plt.xlabel('Col.0')
    plt.ylabel('Col.2')
    plt.legend()
   
    cx = fig.add_subplot(313)
    for i in range(1, 4):
        index = np.where(np.array(datingLabels) == i)
        cx.scatter(datingDataMat[index, 1], datingDataMat[index, 2], c=color[i - 1], label=i)
    plt.xlabel('Col.1')
    plt.ylabel('Col.2')
    plt.legend()
    
    plt.show()

归一化特征值,消除特征之间量级不同导致的影响。

def autoNorm(dataSet):
    """
    Desc:
        归一化特征值,消除特征之间量级不同导致的影响
    parameter:
        dataSet: 数据集
    return:
        归一化后的数据集 normDataSet.ranges和minVals即最小值与范围,并没有用到
    归一化公式:
        Y = (X-Xmin)/(Xmax-Xmin)
        其中的 min 和 max 分别是数据集中的最小特征值和最大特征值。该函数可以自动将数字特征值转化为0到1的区间。
    """
    # 计算每种属性的最大值、最小值、范围
    minVals = np.min(dataSet, axis=0)
    maxVals = np.max(dataSet, axis=0)
    # 极差
    ranges = maxVals - minVals
    #返回dataSet矩阵的行数(读取矩阵第一维的长度)
    m = dataSet.shape[0]
    # 生成与最小值之差组成的矩阵
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    # 将最小值之差除以范围组成矩阵
    normDataSet = normDataSet / np.tile(ranges, (m, 1))  # element wise divide
    return normDataSet, ranges, minVals

Step4:训练算法

此步骤不适用于 k-近邻算法。因为测试数据每一次都要与全部的训练数据进行比较,所以这个过程是没有必要的。

def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    # 距离度量 度量公式为欧氏距离
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat ** 2
    sqDistances = np.sum(sqDiffMat, axis=1)
    distances = sqDistances ** 0.5
    # 将距离排序:从小到大
    sortedDistIndicies = distances.argsort()
    # 选取前K个最短距离, 选取这K个中最多的分类类别
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1#次数加1
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)#对label出现的次数从大到小进行排序
    return sortedClassCount[0][0]# 返回出现次数最大的label

Step5:测试算法

计算错误率,使用海伦提供的部分数据作为测试样本。如果预测分类与实际类别不同,则标记为一个错误。

def datingClassTest():
    """
    Desc:
        对约会网站的测试方法
    parameters:
        none
    return:
        错误数
    """
    # 设置测试数据的的一个比例
    hoRatio = 0.1  # 测试范围,一部分测试一部分作为样本
    # 从文件中加载数据
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')  # load data setfrom file
    # 归一化数据
    normMat, ranges, minVals = autoNorm(datingDataMat)
    # m 表示数据的行数,即矩阵的第一维
    m = normMat.shape[0]
    # 设置测试的样本数量, numTestVecs:m表示训练样本的数量
    numTestVecs = int(m * hoRatio)
    print('numTestVecs=', numTestVecs)
    errorCount = 0.0
    for i in range(numTestVecs):
        # 对数据测试
        classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
        print("分类器返回结果: %d, 实际结果: %d" % (classifierResult, datingLabels[i]))
        if classifierResult != datingLabels[i]:
            errorCount += 1.0
    print("错误率: %f" % (errorCount / float(numTestVecs)))
    print(errorCount)

Step6:使用算法

产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。
约会网站预测函数如下:

def classifyPerson():
    resultList = ['不喜欢的人', '魅力一般的人', '极具魅力的人']
    ffMiles = float(input("每年获得的飞行常客里程数?"))
    percentTats = float(input("玩视频游戏所耗时间百分比?"))
    iceCream = float(input("每周消费的冰淇淋公升数?"))
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = np.array([ffMiles, percentTats, iceCream])
    intX = (inArr - minVals) / ranges
    classifierResult = classify0(intX, normMat, datingLabels, 3)
    print("这个人属于: ", resultList[classifierResult - 1])
  '''
每年获得的飞行常客里程数? 10000
玩视频游戏所耗时间百分比? 10
每周消费的冰淇淋公升数? 0.5
这个人属于:  魅力一般的人
'''  

总结:
KNN算法是最简单有效的分类算法,简单且容易实现。当训练数据集很大时,需要大量的存储空间,而且需要计算待测样本和训练数据集中所有样本的距离,所以非常耗时。
  KNN对于随机分布的数据集分类效果较差,对于类内间距小,类间间距大的数据集分类效果好,而且对于边界不规则的数据效果好于线性分类器。

KNN对于样本不均衡的数据效果不好,需要进行改进。改进的方法时对k个近邻数据赋予权重,比如距离测试样本越近,权重越大。

KNN很耗时,时间复杂度为O(n),一般适用于样本数较少的数据集,当数据量大时,可以将数据以树的形式呈现,能提高速度,常用的有kd-tree和ball-tree。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值