题目内容
给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。
在杨辉三角中,每个数是它左上方和右上方的数的和。
示例:
输入: 5
输出:
[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
解题思路
这道题让我们求杨辉三角,而在杨辉三角中,每个数是它左上方和右上方的数的和。最简单的实现是,每行先剔除第一个元素和最后一个元素【直接赋值1】,然后计算中间元素,计算每个中间元素的值都是上一行的当前元素下标位置和下标位置减一的和
代码实现
public class Solution {
public IList<IList<int>> Generate(int numRows)
{
//结果集合【并初始化定义集合大小,防止扩容导致不必要的内存浪费】
var result = new List<IList<int>>(numRows);
//元素小于1返回空集合
if (numRows < 1) return result;
//存入第一行
result.Add(new[] {1});
for (int i = 2; i <= numRows; i++)
{
//创建当前行数组
var row = new int[i];
//得到上一行集合
var lastRow = result[i - 2];
//赋值第一个元素和最后一个元素为1
row[0] = row[i - 1] = 1;
//循环遍历当前行中间元素
for (int j = i - 2; j >= 1; j--)
{
//获取上一行的当前下标位置和上一行的当前下标元素-1的位置的和存入当前下标位置
row[j] = lastRow[j - 1] + lastRow[j];
}
//计算整行值后就存入结果集合中
result.Add(row);
}
//结果集合
return result;
}
}