中心极限定理,学习正态分布,学习最大似然估计

本文介绍了机器学习的基础,包括中心极限定理、正态分布和最大似然估计的概念,并探讨了最小二乘法与高斯分布的关系,以及为何选择平方损失函数。同时,讨论了全局最优和局部最优、导数、泰勒展开、梯度下降的推导和实现,以及L0、L1、L2范数在正则化中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 1.了解什么是Machine learning
    机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

  • 2.学习中心极限定理,学习正态分布,学习最大似然估计
    在这里插入图片描述在这里插入图片描述
    在这里插入图片描述

  • 3.推导回归Loss function

  • 在这里插入图片描述
    在这里插入图片描述

  • 4.学习损失函数与凸函数之间的关系
    平方损失函数(最小二乘法, Ordinary Least Squares )(凸函数),最小二乘法是线性回归的一种,OLS将问题转化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值