描述
给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。
一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。
返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。
示例 1:
输入:grid = [[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]]
输出:3
解释:有三个 1 被 0 包围。一个 1 没有被包围,因为它在边界上。
示例 2:
输入:grid = [[0,1,1,0],[0,0,1,0],[0,0,1,0],[0,0,0,0]]
输出:0
解释:所有 1 都在边界上或可以到达边界。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 500
grid[i][j] 的值为 0 或 1
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/number-of-enclaves
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
多源BFS
class Solution {
public int numEnclaves(int[][] grid) {
Queue<int[]> queue = new LinkedList<>();
int m = grid.length, n = grid[0].length;
boolean[][] visited = new boolean[m][n];
for(int i = 0; i < m; i++) {
if (grid[i][0] == 1) {
queue.offer(new int[]{i,0});
visited[i][0] = true;
}
if (grid[i][n-1] == 1) {
queue.offer(new int[]{i,n-1});
visited[i][n-1] = true;
}
}
for (int i = 1; i < n - 1; i++) {
if (grid[0][i] == 1) {
queue.offer(new int[]{0,i});
visited[0][i] = true;
}
if (grid[m-1][i] == 1) {
queue.offer(new int[]{m-1,i});
visited[m-1][i] = true;
}
}
int[][] dir = new int[][]{{1,0},{-1,0},{0,1},{0,-1}};
while (!queue.isEmpty()) {
int[] arr = queue.poll();
for (int[] di : dir) {
int ni = arr[0] + di[0];
int nj = arr[1] + di[1];
if (ni < 0 || nj < 0 || ni == m || nj == n || grid[ni][nj] != 1 || visited[ni][nj]) {
continue;
}
queue.offer(new int[]{ni,nj});
visited[ni][nj] = true;
}
}
int sum = 0;
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if (grid[i][j] == 1 && !visited[i][j]) {
sum++;
}
}
}
return sum;
}
}