描述
给你一个整数数组 nums ,数组中共有 n 个整数。132 模式的子序列 由三个整数 nums[i]、nums[j] 和 nums[k] 组成,并同时满足:i < j < k 和 nums[i] < nums[k] < nums[j] 。
如果 nums 中存在 132 模式的子序列 ,返回 true ;否则,返回 false 。
示例 1:
输入:nums = [1,2,3,4]
输出:false
解释:序列中不存在 132 模式的子序列。
示例 2:
输入:nums = [3,1,4,2]
输出:true
解释:序列中有 1 个 132 模式的子序列: [1, 4, 2] 。
示例 3:
输入:nums = [-1,3,2,0]
输出:true
解释:序列中有 3 个 132 模式的的子序列:[-1, 3, 2]、[-1, 3, 0] 和 [-1, 2, 0] 。
提示:
n == nums.length
1 <= n <= 2 * 105
-109 <= nums[i] <= 109
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/132-pattern
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
用一个数组lmin存储当前元素左侧的最小值,用单调栈寻找132中的3。
从右向左遍历数组如此便能找到当前值右侧小于当前值的元素,判断这些元素是否大于当前值左侧的最小元素,是返回true。
单调栈不是寻找左右两侧第一个大于本元素的值,而是寻找小于当前元素但又大于132中的1。
class Solution {
public boolean find132pattern(int[] nums) {
Stack<Integer> stack = new Stack<>();
int[] lmin = new int[nums.length];
lmin[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
lmin[i] = Math.min(nums[i-1],lmin[i-1]);
}
int j = nums.length - 1;
while (j > 0) {
if (stack.isEmpty() || nums[j] <= stack.peek()) {
stack.push(nums[j]);
j--;
continue;
}
if (stack.peek() > lmin[j]) {
return true;
}
while (!stack.isEmpty() && stack.peek() < nums[j]) {
stack.pop();
if (!stack.isEmpty() && stack.peek() > lmin[j] && stack.peek() < nums[j]) {
return true;
}
}
stack.push(nums[j]);
j--;
}
return false;
}
}