背包问题

本文介绍了使用动态规划解决01背包问题,详细阐述了状态转移方程和优化方法,包括滚动数组和根据枚举顺序进一步优化。并讨论了背包问题的变种,如总体积最大和可行性背包,以及如何计算方案数和输出方案。
摘要由CSDN通过智能技术生成

第一个问题:01背包问题
时间复杂度O(n*v),空间复杂度O(v) 其中n是物品个数,v是背包大小。
在这里插入图片描述
(x, y) 表示物品大小为x,价值为y
设置状态dpij,表示考虑到前i个物品用大小为j的背包所能装的最大价值
A. 考虑第i个物品可以不要这个物品。dpij = dpi-1j
比如已经用(1, 2)(1, 3)两个物品装进背包,那么此时背包大小为2的时候我们最大价值为5。
现在考虑第三个物品(2,4)来装进背包。当我们枚举到背包大小2的时候,用第三个物品装背包价值会减小,那么这个物品相对前两个“性价比”更低,所以不选。
B. 考虑第i个物品选。dpij = dpi-1j-x + y
比如已经用(1, 2)(1, 3)两个物品装进背包,那么此时背包大小为2的时候我们最大为价值5,背包大小为3的时候最大价值也是5。
现在考虑第三个物品(2,4)来装进背包。当我们枚举到背包大小3的时候,用第三个物品装背包价值会从dp[3 - 1][3 - 2]转移, 发现价值转移完为6。
所以得状态转移方程式:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define forn(i, n) for(int i = 0; i < n; ++i)
#define for1(i, n) for(int i = 1; i <= n; ++i)
#define IO ios::sync_with_stdio(false);cin.tie(0)

const int maxn = 1e3 + 5;

int dp[maxn][maxn];

int main(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值