第一个问题:01背包问题
时间复杂度O(n*v),空间复杂度O(v) 其中n是物品个数,v是背包大小。
(x, y) 表示物品大小为x,价值为y
设置状态dpij,表示考虑到前i个物品用大小为j的背包所能装的最大价值
A. 考虑第i个物品可以不要这个物品。dpij = dpi-1j
比如已经用(1, 2)(1, 3)两个物品装进背包,那么此时背包大小为2的时候我们最大价值为5。
现在考虑第三个物品(2,4)来装进背包。当我们枚举到背包大小2的时候,用第三个物品装背包价值会减小,那么这个物品相对前两个“性价比”更低,所以不选。
B. 考虑第i个物品选。dpij = dpi-1j-x + y
比如已经用(1, 2)(1, 3)两个物品装进背包,那么此时背包大小为2的时候我们最大为价值5,背包大小为3的时候最大价值也是5。
现在考虑第三个物品(2,4)来装进背包。当我们枚举到背包大小3的时候,用第三个物品装背包价值会从dp[3 - 1][3 - 2]转移, 发现价值转移完为6。
所以得状态转移方程式:
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define forn(i, n) for(int i = 0; i < n; ++i)
#define for1(i, n) for(int i = 1; i <= n; ++i)
#define IO ios::sync_with_stdio(false);cin.tie(0)
const int maxn = 1e3 + 5;
int dp[maxn][maxn];
int main(