使用 FiftyOne 导出 VOC 数据集的完整指南

在机器学习和计算机视觉项目中,处理和准备数据集是一个既重要又经常耗时的步骤。FiftyOne 是一个非常强大的开源工具,它提供了一个丰富的API和用户界面,可以帮助您有效地探索、可视化、修改和导出您的数据集。在本文中,我们将重点讲解如何使用FiftyOne将数据集导出为 VOC (Visual Object Classes) 格式,这是一个在计算机视觉任务中广泛使用的数据集格式。

安装 FiftyOne

首先,如果您还没有安装 FiftyOne,请打开终端或命令提示符,运行以下命令来安装:

pip install fiftyone

设置和导出 VOC 数据集

定义数据集参数

type = "val"
dataset_dir = "E:\\lindsay"
voc_export_dir = dataset_dir + "/voc_dataset_kitchen"
dataset_name = "kitchen"

根据数据集类型设置路径和名称

if type == "val":
    split = "validation"
    voc_export_dir += "_" + split
    dataset_name += "_" + split
elif type == "train":
    split = "train"
    voc_export_dir += "_" + split
    dataset_name += "_" + split

加载数据集

dataset = foz.load_zoo_dataset(
    "open-images-v7",
    split=split,
    label_types=["detections"],
    classes=["Watermelon", "Cabbage", "Apple", "Banana", "Carrot", "Fruit"],
    shuffle=True,
    max_samples=1000,
    dataset_dir=dataset_dir,
    dataset_name=dataset_name,
    only_matching=False,
    num_workers=1
)

启动 FiftyOne 应用

session = fo.launch_app(dataset)

导出到VOC格式

dataset.export(
    export_dir=voc_export_dir,
    dataset_type=fo.types.VOCDetectionDataset,
    split=split,
    label_field="ground_truth",
)

print(f"Dataset has been exported to VOC format at '{voc_export_dir}'")

代码:

import fiftyone as fo
import fiftyone.zoo as foz

# 定义数据集参数
type = "val"
dataset_dir = "E:\\lindsay"
voc_export_dir = dataset_dir + "/voc_dataset_kitchen"
dataset_name = "kitchen"

# 根据数据集类型设置路径和名称
if type == "val":
    split = "validation"
    voc_export_dir += "_" + split
    dataset_name += "_" + split
elif type == "train":
    split = "train"
    voc_export_dir += "_" + split
    dataset_name += "_" + split

# 加载数据集
dataset = foz.load_zoo_dataset(
    "open-images-v7",
    split=split,
    label_types=["detections"],
    classes=["Watermelon", "Cabbage", "Apple", "Banana", "Carrot", "Fruit"],
    shuffle=True,
    max_samples=1000,
    dataset_dir=dataset_dir,
    dataset_name=dataset_name,
    only_matching=False,
    num_workers=1
)

# 启动 FiftyOne 应用
session = fo.launch_app(dataset)

# 导出到VOC格式
dataset.export(
    export_dir=voc_export_dir,
    dataset_type=fo.types.VOCDetectionDataset,
    split=split,
    label_field="ground_truth",
)

print(f"Dataset has been exported to VOC format at '{voc_export_dir}'")

结论

通过上面的步骤,您可以轻松地将各种数据集导出为 VOC 格式,FiftyOne 提供的功能让数据集的管理和预处理变得简单高效。该工具不仅适合于数据科学家与计算机视觉研究人员,也适合所有需要处理大量图像数据的专业人士。使用FiftyOne作为您的数据集管理工具,可以极大地加快您在机器学习项目中的进度,同时改善结果的质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lindsayshuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值