Pandas 数据结构介绍——DataFrame二元函数定义(数组计算)

本文详细介绍了Pandas DataFrame的数值计算和布尔运算操作,包括加减乘除、取整、取模、指数等数学运算,以及小于、大于、小于等于、大于等于、不等于和等于的比较运算。通过实例展示了如何使用这些操作对DataFrame进行算术和逻辑处理,为数据分析提供基础操作指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DataFrame的计算

import numpy as np
import pandas as pd

1. DataFrame数值计算

  • DataFrame.add(other, axis='columns', level=None, fill_value=None): +
  • DataFrame.sub(other, axis='columns', level=None, fill_value=None): -
  • DataFrame.mul(other, axis='columns', level=None, fill_value=None): *
  • DataFrame.div(other, axis='columns', level=None, fill_value=None): /
  • DataFrame.floordiv(other, axis='columns', level=None, fill_value=None): //
  • DataFrame.mod(other, axis='columns', level=None, fill_value=None): %
  • DataFrame.pow(other, axis='columns', level=None, fill_value=None): **

参数:

  • other: scalar, sequence, Series, or DataFrame
  • axis : {0 or 'index', 1 or 'columns'}
  • level : int or label
  • fill_value : float or None, default None
# 定义对象
>>> df = pd.DataFrame(data=np.array([(x, x+1, x+2, x+3, x+4) for x in range(0,25,5)],
                                dtype=[('col1', 'i4'), ('col2', 'i8'), ('col3', 'i4'), ('col4','f8'), ('col5', 'b')]))
>>> df

col1	col2	col3	col4	col5
0	0	1	2	3.0	4
1	5	6	7	8.0	9
2	10	11	12	13.0	14
3	15	16	17	18.0	19
4	20	21	22	23.0	24

>>&g
Pandas 中,对于二元运算,可以使用通用函数(ufunc)进行计算。通用函数是一种能够对数组进行逐元素操作的函数,例如加、减、乘、除等运算。在 Pandas 中,通用函数可以被应用于 Series 和 DataFrame 对象上,实现对数据的快速计算。 在进行二元运算时,Pandas 会自动对两个对象的索引进行对齐,然后进行运算。具体来说,Pandas 会对两个对象的索引进行比较,将它们对应的元素进行匹配,如果索引不匹配,则用 NaN 填充。然后,Pandas 会对匹配的元素进行通用函数计算,并返回一个新的对象,其索引为交集,数据为计算结果。 例如,对于两个 Series 对象进行加法运算,可以使用 `+` 运算符进行计算: ```python import pandas as pd s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c']) s2 = pd.Series([2, 3, 4], index=['b', 'c', 'd']) s3 = s1 + s2 print(s3) ``` 输出结果为: ``` a NaN b 4.0 c 6.0 d NaN dtype: float64 ``` 可以看到,对于两个 Series 对象进行加法运算时,Pandas 会自动对索引进行对齐,然后计算相应的值,并返回一个新的 Series 对象,其中索引为两个对象的交集,数据为计算结果。 需要注意的是,如果两个对象的索引没有交集,那么返回的对象将为空。此外,在进行二元运算时,还可以使用 `add()`、`sub()`、`mul()`、`div()` 等方法进行计算。这些方法也可以进行自动对齐,计算结果与使用运算符相同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值