sparksql

sql是非常重要的,以前很多数据处理DBA做的,后来基于hadoop的大数据处理,mr比较繁琐,就有了hive,那么spark也是不能少了sql风格的
和基于RDD的sparkCore其实差不多,只是风格不同而已,就好像mr和hive的关系

1.DataFrames

与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。由于与R和Pandas的DataFrame类似,Spark DataFrame很好地继承了传统单机数据分析的开发体验。
可以理解为具有传统数据库(例如mysql)的这样的格式的RDD,其实就是在操作表

在这里插入图片描述
在这里插入图片描述

dataframe生成

创建DataFrame方式1

package com.qf.spark.sql

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext

object InferringSchema {
  def main(args: Array[String]) {

    //创建SparkConf()并设置App名称
    val conf = new SparkConf().setAppName("SQL-1")
    //SQLContext要依赖SparkContext
    val sc = new SparkContext(conf)
    //创建SQLContext
    val sqlContext = new SQLContext(sc)

    //从指定的地址创建RDD
    val lineRDD = sc.textFile(args(0)).map(_.split(" "))

    //创建case class
    //将RDD和case class关联
    val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
    //导入隐式转换,如果不到人无法将RDD转换成DataFrame
    //将RDD转换成DataFrame
    import sqlContext.implicits._
    val personDF = personRDD.toDF
    //注册表
    personDF.registerTempTable("t_person")
    //传入SQL
    val df = sqlContext.sql("select * from t_person order by age desc limit 2")
    //将结果以JSON的方式存储到指定位置
    df.write.json(args(1))
    //停止Spark Context
    sc.stop()
  }
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)

创建DataFrame方式2

// 由StructType类型指定Schema
    val schema: StructType = StructType {
      Array(
        StructField("id", IntegerType, false),
        StructField("name", StringType, true),
      )
    }
   //映射  
    linesRDD.map(p => Row(p(0).toInt, p(1), p(2).toInt, p(3).toInt))
    // 转换为DF     
    sqlContext.createDataFrame(rowRDD, schema)

DSL风格语法

这个我用的也不是很多,简单给几个例子吧

//查看DataFrame中的内容
personDF.show

//查看DataFrame部分列中的内容
personDF.select(personDF.col("name")).show
personDF.select(col("name"), col("age")).show
personDF.select("name").show

//打印DataFrame的Schema信息
personDF.printSchema

//查询所有的name和age,并将age+1
personDF.select(col("id"), col("name"), col("age") + 1).show
personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show


//过滤age大于等于18的
personDF.filter(col("age") >= 18).show


//按年龄进行分组并统计相同年龄的人数
personDF.groupBy("age").count().show()

sql风格操作方法

把df当成表,直接写sql语句是不是很爽,学习成本很低了,不用再去特意学习api

//注册成临时表
personDF.registerTempTable("t_person")
//然后就可以直接写sql
 sqlContext.sql("select * from t_person order by age desc limit 2").show
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

orange大数据技术探索者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值