sql是非常重要的,以前很多数据处理DBA做的,后来基于hadoop的大数据处理,mr比较繁琐,就有了hive,那么spark也是不能少了sql风格的
和基于RDD的sparkCore其实差不多,只是风格不同而已,就好像mr和hive的关系
1.DataFrames
与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。由于与R和Pandas的DataFrame类似,Spark DataFrame很好地继承了传统单机数据分析的开发体验。
可以理解为具有传统数据库(例如mysql)的这样的格式的RDD,其实就是在操作表
dataframe生成
创建DataFrame方式1
package com.qf.spark.sql
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
object InferringSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-1")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val lineRDD = sc.textFile(args(0)).map(_.split(" "))
//创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
//导入隐式转换,如果不到人无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF
//注册表
personDF.registerTempTable("t_person")
//传入SQL
val df = sqlContext.sql("select * from t_person order by age desc limit 2")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
创建DataFrame方式2
// 由StructType类型指定Schema
val schema: StructType = StructType {
Array(
StructField("id", IntegerType, false),
StructField("name", StringType, true),
)
}
//映射
linesRDD.map(p => Row(p(0).toInt, p(1), p(2).toInt, p(3).toInt))
// 转换为DF
sqlContext.createDataFrame(rowRDD, schema)
DSL风格语法
这个我用的也不是很多,简单给几个例子吧
//查看DataFrame中的内容
personDF.show
//查看DataFrame部分列中的内容
personDF.select(personDF.col("name")).show
personDF.select(col("name"), col("age")).show
personDF.select("name").show
//打印DataFrame的Schema信息
personDF.printSchema
//查询所有的name和age,并将age+1
personDF.select(col("id"), col("name"), col("age") + 1).show
personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show
//过滤age大于等于18的
personDF.filter(col("age") >= 18).show
//按年龄进行分组并统计相同年龄的人数
personDF.groupBy("age").count().show()
sql风格操作方法
把df当成表,直接写sql语句是不是很爽,学习成本很低了,不用再去特意学习api
//注册成临时表
personDF.registerTempTable("t_person")
//然后就可以直接写sql
sqlContext.sql("select * from t_person order by age desc limit 2").show