数据分析实战
文章平均质量分 92
LGDDDDDD
这个作者很懒,什么都没留下…
展开
-
Task4 建模调参
模型调参线性回归线性回归原创 2020-03-31 21:24:37 · 231 阅读 · 0 评论 -
Task3 二手车数据特征工程
Task3 特征工程特征工程是什么特征工程方法特征工程是什么有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用特征工程方法常见的特征工程包括:1、异常处理:通过箱线图(或 3-Sigma)分析删除异常值;BOX-COX 转换(处理有...原创 2020-03-27 10:23:37 · 562 阅读 · 0 评论 -
Task2:数据的探索性分析(EDA)
Task2:数据的探索性分析(EDA)什么是EDAEDA目标主要工作导入、观察数据数据概况判断数据缺失判断数据异常了解预测值的分布特征分为类别特征和数字特征数字特征分析什么是EDA探索性数据分析(Exploratory Data Analysis,简称EDA),是指对已有的数据(特别是调查或观察得来的原始数据)在尽量少的先验假定下进行探索,通过作图、制表、方程拟合、计算特征量等手段探索数据的结...原创 2020-03-23 23:13:49 · 562 阅读 · 0 评论 -
基因填补交叉验证
在研究缺失基因填补的项目中,导师要求对其他算法的效果进行五次五折交叉验证,每次需要将数据划分为五份,每份数据将待填补的数据集的非0部分随机掩五分之一,生成五份数据作为训练集输入算法,与输出结果的掩码部分进行评估。import numpy as npimport pandas as pdfrom sklearn.model_selection import KFoldseed=[np.ran...原创 2020-01-13 15:59:23 · 345 阅读 · 0 评论 -
利用Python进行足球远动员分析
利用Python进行足球远动员分析分析步骤1、明确需求与目的数据预览提出问题2、数据预处理数据清洗缺失值异常值重复值数据转换3、数据分析问题1问题2问题3问题4问题5问题64、总结分析步骤1、明确需求与目的身为一个足球资深球迷,本人对足球远动员的一些比赛数据非常感兴趣。足球运动员孰强孰弱的争论喋喋不休,不妨让数据来说话,让数据来体现?数据预览拿到数据,首先要明确各个列标签的含义Nam...原创 2019-07-10 17:24:29 · 2989 阅读 · 1 评论 -
python广深地区房价数据的爬取与分析
本项目收集了广东省二手房数据,着重分析广深地区的房价。首先采用统计分析的方法对数据进行初步分析,大致了解房价分布及其影响因素;随后调用百度地图API,实现数据地图可视化。最后采用机器学习方法建模预测,并比较了几种常用回归模型的预测效果。基本符合一个完整数据分析案例的要求,采用直观的数据可视化方式展示数据,并通过数据分析为二手房购买者提供建设性意见。但仍有很多不足的地方,如并没有对数据进行特征工程,没有进行特征的转换和筛选,机器学习模型的调参也比较简略,因此预测能力还有很大的提升空间。...原创 2019-08-05 23:01:12 · 24578 阅读 · 46 评论