Python classmethod(),decorator,函数上面出现了@是什么意思

理解类方法与装饰器
本文深入探讨了类方法的概念,解释了它们如何不同于实例方法和静态方法,以及如何使用装饰器来转换函数为类方法。通过具体示例,展示了类方法在Python中的应用。

什么是类方法?
类方法是绑定到类而不是对象的方法。它不需要创建类实例,就像staticmethod一样。

静态方法和类方法之间的区别是:

  1. 静态方法对类一无所知,只处理参数
  2. 类方法与类一起使用,因为其参数始终是类本身。

例子1

class Person:
    age = 25

    def printAge(cls):
        print('The age is:', cls.age)

# create printAge class method
Person.printAge = classmethod(Person.printAge)
#
Person.printAge()

在这里,我们有一个类 Person,其变量age被指定为25。
我们还有一个函数printAge带有一个单独的参数cls,而不是平常我们见到的self。

cls接受类Person作为参数,而不是Person的对象/实例。

现在,我们将该方法Person.printAge作为参数传递给函数classmethod。这会将printAge转换为类方法,以便它接受第一个参数作为类(即Person)。

在最后一行中,调用printAge函数没有像静态方法那样创建Person对象。然后打印类变量age。

运行结果:

The age is: 25

例子2

from datetime import date

# random Person
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age


	#注意这里的@classmethod
    @classmethod
    def fromBirthYear(cls, name, birthYear):
        return cls(name, date.today().year - birthYear)

    def display(self):
        print(self.name + "'s age is: " + str(self.age))

person = Person('Adam', 19)
person.display()
#这里可以通过实例person调用frombirthyear函数,这个函数返回name,age给Person类
person.fromBirthYear('yu',1997).display()

#这里不需要实例化,可以看成直接从Person类中调用frombirthyear函数。
person1 = Person.fromBirthYear('John',  1985)
person1.display()

输出结果

Adam's age is: 19
yu's age is: 23
John's age is: 31

__init__函数需要传入参数self,name和age。fromBirthYear函数需要传入cls,name,和birthYear

fromBirthYear函数将Person类(不是Person对象)作为第一个参数cls,并通过调用return构造函数cls(name, date.today().year - birthYear),这等效于Person(name, date.today().year - birthYear)

在该方法之前,我们看到了@classmethod。这称为装饰器,用于转换fromBirthYear为classmethod()的类方法。

decorator

decorator可以在原始函数中添加了一些新功能

def make_pretty(func):
    def inner():
        print("I got decorated")
        func()
    return inner

def ordinary():
    print("I am ordinary")
    
ordinary()

pretty = make_pretty(ordinary)
#这里将ordinary函数传入make_pretty所需的参数中,添加ordinary()函数给inner()函数,然后再返回给pretty。
pretty()

输出如下

I am ordinary
I got decorated
I am ordinary

这种方法还可以这样表示

@make_pretty
def ordinary():
    print("I am ordinary")
#函数头顶有个@,说明这个函数是要当成参数添加到make_pretty函数当中的。


#用@的方法和下面这种等价
def ordinary():
    print("I am ordinary")
pretty = make_pretty(ordinary)

<think>好的,用户想了解Python@符号的含义和用法,特别是装饰器相关的内容。我需要根据用户提供的引用资料来组织回答,确保符合系统级指令的要求。首先,装饰器的基本概念是修改其他函数的功能,似于Java的注释,但更灵活。用户可能已经知道函数的基本知识,但需要明确装饰器的用途和语法。 接下来,需要解释@符号的用法。根据引用资料,@后面跟的是装饰器函数名,放在被装饰函数定义之前。例如,@my_decorator在def say_hello()之前。这里需要强调@符号的语法位置和如何简化装饰器的应用,如引用3提到的my_func = func_decorator(my_func)等价于@func_decorator。 然后,分讨论装饰器的型,如函数装饰器和装饰器。引用1提到内置的装饰器如@staticmethod、@classmethod@property,这些是常见的例子,应该详细说明它们的用途。例如,@staticmethod用于定义静态方法,不接收隐式的第一个参数;@classmethod用于方法,接收作为第一个参数;@property用于将方法转为属性。 此外,需要覆盖装饰器的实现原理,即闭包和高阶函数的概念。装饰器函数接收被装饰函数作为参数,并返回一个新函数,比如在引用5中的my_decorator例子,wrapper函数包裹了原函数,添加了前后处理逻辑。 还要注意装饰器的注意事项,如处理参数、保留元数据、嵌套装饰器的顺序等。引用5提到使用functools.wraps来保留原函数的元数据,这点很重要,需要特别指出,避免用户在使用装饰器时遇到函数名或文档丢失的问题。 用户可能对装饰器的实际应用场景感兴趣,比如日志记录、性能测试、权限校验等。可以举一个简单的例子,比如记录函数执行时间的装饰器,帮助用户理解如何在实际项目中应用。 最后,生成相关问题时要覆盖装饰器的原理、内置装饰器、参数处理、应用场景等,确保问题有针对性,帮助用户进一步学习。检查是否所有行内公式使用了$...$,但根据用户的问题,可能不需要数学公式,所以这部分可能不涉及,但需确认系统指令中的要求,确保格式正确。 需要确保回答结构清晰,分点说明,引用资料中的例子,并在适当位置添加引用标识。比如在讲解内置装饰器时引用[^1],在说明装饰器功能时引用[^2],在实现原理时引用[^3][^5]。同时,代码块要使用正确的格式,如示例中的Python代码,使用三个反引号包裹,并注明语言型。 总结回答结构:定义、语法、型、实现原理、注意事项、应用示例,最后相关问题。确保每个部分简洁明了,符合用户需求。</think>### Python装饰器的含义及用法详解 #### 一、装饰器的定义 **装饰器(Decorators)** 是 Python 中用于修改或增强其他函数功能的工具。其本质是一个可调用对象(函数),通过`@`符号语法糖将被装饰对象作为参数传入装饰器,并返回一个新的增强版对象[^2]。 #### 二、@符号的语法规范 1. **基本语法** 装饰器需紧贴在被装饰对象的定义之前,例如: ```python @my_decorator def my_function(): pass ``` 等价于: ```python def my_function(): pass my_function = my_decorator(my_function) ``` 2. **支持多装饰器嵌套** 多个装饰器按**从下到上**的顺序执行: ```python @decorator1 @decorator2 def func(): pass # 等价于 func = decorator1(decorator2(func)) ``` #### 三、装饰器的核心型 1. **函数装饰器** 以函数形式定义,接收被装饰函数作为参数,返回一个新函数: ```python def timer_decorator(func): def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) print(f"耗时:{time.time() - start}秒") return result return wrapper @timer_decorator def heavy_calculation(): time.sleep(2) ``` 2. **装饰器** 通过实现`__call__`方法让成为装饰器: ```python class Counter: def __init__(self, func): self.func = func self.count = 0 def __call__(self, *args, **kwargs): self.count += 1 print(f"第{self.count}次调用") return self.func(*args, **kwargs) @Counter def say_hello(): print("Hello!") ``` 3. **内置装饰器** - `@staticmethod`: 定义静态方法,无需实例或参数[^1] ```python class MathUtils: @staticmethod def add(a, b): return a + b ``` - `@classmethod`: 定义方法,首个参数为本身[^1] ```python class Person: @classmethod def from_birth_year(cls, name, year): age = 2024 - year return cls(name, age) ``` - `@property`: 将方法转为属性访问 ```python class Circle: def __init__(self, radius): self._radius = radius @property def radius(self): return self._radius ``` #### 四、关键注意事项 1. **参数传递** 装饰器内部函数需使用`*args`和`**kwargs`接收所有参数: ```python def decorator(func): def wrapper(*args, **kwargs): print("参数:", args, kwargs) return func(*args, **kwargs) return wrapper ``` 2. **保留元数据** 使用`functools.wraps`保留原函数名称和文档: ```python import functools def log_decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): print(f"调用{func.__name__}") return func(*args, **kwargs) return wrapper ``` 3. **装饰器参数化** 通过嵌套函数实现带参数的装饰器: ```python def repeat(n): def decorator(func): def wrapper(*args, **kwargs): for _ in range(n): result = func(*args, **kwargs) return result return wrapper return decorator @repeat(3) def alarm(): print("请注意安全!") ``` #### 五、典型应用场景 1. **日志记录**:自动记录函数调用信息 2. **性能分析**:统计函数执行时间 3. **权限校验**:验证用户权限后执行核心逻辑 4. **缓存机制**:缓存函数计算结果加速重复调用
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值