2023年华数杯国际大学生数学建模竞赛
A题 雅鲁藏布江综合开发规划
原题再现
雅鲁藏布江是中国最长的高原河流,也是世界上海拔最高的河流之一。发源于喜马拉雅山北麓,自西向东流动,然后向南流向印度。雅鲁藏布江全长2057公里,分为上游、中游和下游。河床上下游落差4000余米,水位下降幅度较大,水能储量丰富。
雅鲁藏布江的开发利用在学术界争议较大。有学者认为,要实现“碳峰”和“碳中和”,就必须大幅度减少火力发电量,增加水力发电量。要充分利用雅鲁藏布江干流水位差大的优势,建设一系列梯级水电站。但反对者认为,在雅鲁藏布江修建多座水电站将打破脆弱的环境。此外,建设成本和输水成本较大,从经济投入和产出来看,最好是直接向西部调水。著名的“红旗河”工程,使西藏的水进入边界,目前正在热烈讨论。
请您考虑未来50年,并研究以下问题。
1.水电站的建设需要考虑各种因素,包括投入和收入、地质和水文条件以及环境成本。请选择雅鲁藏布江干流上的一个地点,并讨论在那里建造水电站的可行性。
2.如果在雅鲁藏布江干流上建多个水电站,从最大能源的角度来看,雅鲁藏布江干流上可以建多少个水电站?潜在的总发电量是多少?
3.“红旗河”工程是一项引水工程,如果雅鲁藏布江的水能够输送到西北地区,不仅可以改善西北地区的缺水状况,还可以改善当地的自然环境。然而,这个项目是一项巨大的投资,需要考虑许多因素。请从经济效益的角度探讨该项目建设的可行性。
4、有学者认为,雅鲁藏布江水电站建设与西北调水可以综合考虑、统筹协调。请设计雅鲁藏布江水资源综合利用方案,使其价值最大化。
5.流入印度的雅鲁藏布江的全面开发势必引起印度的关注。请考虑这个因素并调整您的综合发展计划。
6.根据您的研究和结论,请向中国政府提供不超过一页的政策建议。
整体求解过程概述(摘要)
雅鲁藏布江是中国最长的高原河流,具有很大的开发价值。本文对其发展进行了探讨。
对于问题1,讨论在雅鲁藏布江上修建水电站的可行性,我们首先根据雅鲁藏布江上五个电站的可行性,选择了五个地点进行分析[1]。然后,根据文献研究[2]和理论分析,筛选出大坝建设成本、电力需求、税收和改善环境条件的效益。以深厚覆盖层和公路、铁路等交通设施等11项指标为基础,构建EWM-TOPSIS模型,寻找最佳坝址。最后,得出Nang县建设水电站的可行性最高,移民补偿成本、大坝建设工程成本和大坝运行成本三个因素都不存在巨大的问题。在同样的情况下获得的经济效益是最大的。
对于问题2,为了探索雅鲁藏布江干流可以建设的水电站数量和在获得最大能量的前提下可以产生的潜在总发电量,本文采用以保证最大出力为优化目标的maxmin模型,并使用matlab通过动态规划方法进行求解。获得最大保证输出,以确保输出和发电之间的函数关系,从而求解最大发电量。最后,根据所选水电站的规模,雅鲁藏布江干流上可以建设的水电站数量为17座,潜在总发电量为3669.822亿kWh/天。
对于问题3,为了从经济效益的角度验证“红旗河”项目的可行性,我们建立了一个可行性模型来评价“把西藏带到新疆”项目。我们了解到,该项目的基本目标是投资4万亿元,向新疆和其他干旱地区输送600亿立方米的水。以项目的效益和成本为目标,以技术、生态等因素为约束,逆向计算能否达到目标。根据每条河流的年平均径流量,我们计算出项目的估算投资额不能支持“红旗河”项目的完成,因此项目建设的可行性很小。
针对问题4,以综合利用价值最大化为目标,建立了以调水、发电和水文变化生态指标为目标函数的多目标调度优化模型,寻找经济效益和生态效益最大化的方案。最后,选择了调水、发电价值高、WQL大、HA小的方案。
对于问题5,中国对雅鲁藏布江的全面开发必将引起印度的关注。为了考虑印度因素对综合发展计划的影响,本文在问题4中建立的模型的基础上,考虑到印度因素对现有指标的影响,以便对我国的综合发展计划进行调整。即选择调水发电价值高、发电量和生态指标WQL高、HA低的方案。
最后,我们评估了该模型的优缺点,并对其进行了推广,同时根据我们的研究和结论,为中国政府提供了政策建议。
模型假设:
假设1:假设五个选定区域具有相同的内部地质条件和装机容量。理由:由于雅鲁藏布江流域周围地形复杂,受实际条件限制,我们无法进行实地调查。
假设2:假设大坝建设成本根据电站总装机容量[10]确定,采用Gyaca县已知的大坝建设成本计算其他地点的工程建设成本。理由:由于雅鲁藏布江水电站的建设仍处于初步阶段,缺乏实际成本估算。
假设3:假设所有发电站继续发电,总发电量达到最大总发电量的80%[11]。理由:由于潜在发电量和电站数量是从最大能量的角度计算的,因此根据实际情况选择每个指标的最大可能值。
假设4:假设所有水电站均按季节、年份和年份调节,水电站的工作能力与保证出力之比为4倍。理由:由于季节性、年度和多年调节水电站可以在负荷曲线的腰部以上运行,其工作容量与保证输出的比率将超过3倍[12]。
假设5:假设不考虑调水过程中水分的蒸发和渗漏,600亿m^3的调水完全达到需水面积。理由:在考虑输水过程中水分的蒸发和泄漏时,影响因素太多,无法客观分析。因此,为了简化问题,仅考虑农田和绿地用水来估计调水的合理性。
问题重述:
本文主要建立了一个优化模型来解决这些问题。
为了解决问题1,我们首先在现有电站地址的基础上选择了五个站点进行分析。在文献研究和理论分析的基础上,选取了11个指标,并将熵权法和TOPSIS法相结合,建立了熵权TOPSIS模型,以寻求最优选址。在分析过程中,可以看出所选坝址是高度可行的。
为了解决问题2,在能量最大的前提下,基于动态规划的maxmin模型,分析了雅鲁藏布江干流可以建设的水电站数量及其潜在总发电量,研究发现,建设17座水电站可以产生最大的能量,潜在总发电量为3669.822亿kWh/天。
为了解决问题3,建立了“引藏入疆”工程可行性评价模型,分析了“红旗河”工程的可行性。最后,我们计算出该项目的建设可行性不大。
为了解决问题4,建立了雅鲁藏布江水资源综合利用价值最大化的多目标优化模型。最后,在输水发电基本不变的前提下,方案的生态指标应尽可能接近自然,以实现价值最大化。
为了解决问题5,在问题4中增加印度因素,以调整上述计划。最后,选择了高输水发电价值、高发电量、高生态指数WQL和低HA的方案。
模型的建立与求解整体论文缩略图