2012年认证杯SPSSPRO杯数学建模
D题 人机游戏中的数学模型
原题再现:
计算机游戏在社会和生活中享有特殊地位。游戏设计者主要考虑易学性、趣味性和界面友好性。趣味性是本质吸引力,使玩游戏者百玩不厌。网络游戏一般考虑如何搭建安全可靠、丰富多彩的交互平台。人机游戏主要是考虑如何设计模型和算法,使其难度、趣味性达到恰当的平衡,玩家感觉既有难度,又有解决的信心。设计者既要像导演,规划玩家的行为,又要加入一定随机因素,使玩家觉得不是简单重复。所以在游戏创意和模型确定下来后,参数选择和优化变得非常关键。
现在考虑“植物大战僵尸”游戏中的一些简单模型(参赛者不必更深入地了解该游戏)。现在只有三种角色:向日葵、豌豆荚和一种僵尸。向日葵产生阳光,用鼠标点击阳光才能将其收集存储,过一定时间不点击阳光就会消失。种植向日葵和豌豆荚需要花费阳光;豌豆荚当其所在格或右侧有僵尸存在时一粒一粒地发射豌豆,每个豌豆荚内的豌豆数量无限;豌豆向右飞行,打击飞行路线上的僵尸,豌豆不受向日葵和豌豆荚的阻挡,但不能射穿僵尸;僵尸只从屏幕最右边产生,沿着直线从右向左行进,它要吃掉沿途遇到的向日葵和豌豆荚,但会被豌豆打死立即消失。僵尸走到屏幕最左边,则计算机获胜,游戏结束。屏幕上的游戏场地是横平竖直、大小相等的网格,一个格内只能种植一株豌豆荚或向日葵,但可以有任意多个僵尸。
第二阶段问题
问题一: 现在场地有从左至右的 10 个格。请修改第一阶段问题的假设,并重做问题 4。希望玩家更忙碌,但人机输赢的机会不变。
问题二: 构造或查找一个具体的经济问题,解决方法与第一阶段的问题类似,并给出解答。
整体求解过程概述(摘要)
问题分析:
问题一的分析
对问题一进行分析,已知在第一阶段问题的基础上场地从 9 个网格增加到 10 个网格。要求对第一阶段问题的假设进行修改,并重做问题 4。假设游戏开始时有m 朵阳光,每次产生 1 个僵尸,其它假设不变。设置出最佳的种植方案和僵尸产生方案,使玩家更忙碌,并且计算机永远不赢。
通过对第一阶段问题的求解可知,要解决这个问题,首先,求出在场地从左至右 10个网格的情况下,在场地最左边的若干格内种植豌豆荚,没有向日葵和阳光,等间隔产生 1 个僵尸的情况下,最少种植几棵豌豆荚,使产生的僵尸间隔最小,且计算机不会赢。同样采用第一阶段的求解方法,还是假设植物被僵尸吃的时间可以累计,用逆向归纳法推算出僵尸被豌豆打死所用的最短时间(即为出现僵尸的最短间隔时间) 。其次,通过已知条件找出向日葵数量、豌豆荚数量和游戏开始时阳光数量这三者