Target
1)进一步通过网格搜索法对3个模型进行调优(用5000条数据,调参时采用五折交叉验证的方式),并进行模型评估,展示代码的运行结果。(可以尝试使用其他模型)
2)模型融合,模型融合方式任意,并结合之前的任务给出你的最优结果。
例如Stacking融合,用你目前评分最高的模型作为基准模型,和其他模型进行stacking融合,得到最终模型及评分结果。
- 模型调优
对于最后的这次任务,首先进行模型调优,使用网络搜索法,其实就是一种穷举:在所有的候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终结果
以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能性列出来,可以表示成一个3*4的表格,其中每个cell就是一个网格,循环过程就像是在每个网格里遍历、搜索,所以叫Grid Search
Grid Search是一种我们常用的来寻找模型参数的方法,通过不断地组合去试验找到最好的参数
- 参数融合
选择均匀融合,调参结果为:
模型 | 最优参数 | F1评分 |
---|---|---|
LR | C=10, max_iter=20 | 0.713 |
SVM | C=1, max_iter=20 | 0.722 |
LightGBM | learning_rate=0.1, n_estimate=50, num_leaves=10 | 0.647 |
最优结果 | LR+SVM | 0.724 |
模型融合时,应该要注意:
(1) 应选择性能较好的模型进行融合。
(2)应选择具有差异性的模型进行融合,取长补短。
模型融合时,常用函数predict_proba()来输出预测的概率,然后通过几个模型的平均或权值线性组合得到最终的结果。再利用np.argmax()来获得每一行数据对于所有class的最大概率的index,作为我们的预测类别。
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import svm
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.linear_model import LogisticRegression
import lightgbm as lgb
from sklearn.model_selection import GridSearchCV
import gensim
import time
import pickle
import csv,sys
# read data
df = pd.read_csv('data/train_set.csv', nrows=5000)
df.drop(columns='article', inplace=True)
# observe data
# print(df['class'].value_counts(normalize=True, ascending=False))
# TF-IDF
vectorizer = TfidfVectorizer(ngram_range=(1, 2), min_df=3, max_df=0.9, sublinear_tf=True)
vectorizer.fit(df['word_seg'])
x_train = vectorizer.transform(df['word_seg'])
# split training set and validation set
predictor = ['word_seg']
x_train, x_validation, y_train, y_validation = train_test_split(x_train, df['class'], test_size=0.2)
clf = LogisticRegression(C=10, max_iter=20)
clf = svm.LinearSVC(C=1, max_iter=20)
clf = lgb.sklearn.LGBMClassifier(learning_rate=0.1, n_estimators=50, num_leaves=10)
algorithms=[
LogisticRegression(C=10, max_iter=20),
svm.LinearSVC(C=1, max_iter=20),
]
full_predictions = []
for alg in algorithms:
# Fit the algorithm using the full training data.
alg.fit(x_train, y_train)
# Predict using the test dataset. We have to convert all the columns to floats to avoid an error.
predictions = alg.decision_function(x_validation.astype(float))
full_predictions.append(predictions)
y_prediction = (full_predictions[0] + full_predictions[1]) / 2
# adjust labels from 1 to 19
y_prediction = np.argmax(y_prediction, axis=1)+1
# # grid search for model
# param_grid = {
# 'num_leaves': [10, 20, 30],
# 'learning_rate': [0.01, 0.05, 0.1],
# 'n_estimators': [10, 20, 50]
# }
# gbm = GridSearchCV(clf, param_grid, cv=5, scoring='f1_micro', n_jobs=4, verbose=1)
# gbm.fit(x_train, y_train)
# print('网格搜索得到的最优参数是:', gbm.best_params_)
# test model
label = []
for i in range(1, 20):
label.append(i)
f1 = f1_score(y_validation, y_prediction, labels=label, average='micro')
print('The F1 Score: ' + str("%.4f" % f1))