Elasticsearch对数字检索——ngram

数字可能信息不全,需要对数字进行切分,所以选用 ngram 分词器进行分词

测试

POST _analyze
{
  "tokenizer": "ngram",
  "text":"123456"
}

{
  "tokens" : [
    {
      "token" : "1",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "12",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "2",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "23",
      "start_offset" : 1,
      "end_offset" : 3,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "3",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "34",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "word",
      "position" : 5
    },
    {
      "token" : "4",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "word",
      "position" : 6
    },
    {
      "token" : "45",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "word",
      "position" : 7
    },
    {
      "token" : "5",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "word",
      "position" : 8
    },
    {
      "token" : "56",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "word",
      "position" : 9
    },
    {
      "token" : "6",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "word",
      "position" : 10
    }
  ]
}

创建mapping

PUT test
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "my_tokenizer"
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "ngram",
          "min_gram": 3,
          "max_gram": 4,
          "token_chars": [
            "letter",
            "digit"
          ]
        }
      }
    }
  }
  , "mappings": {
    "properties": {
      "name":{
        "type": "text",
        "analyzer": "my_analyzer"
      }
    }
  }
}
POST test/_analyze
{
  "analyzer": "my_analyzer",
  "text":"渝A253DC"
}

{
  "tokens" : [
    {
      "token" : "渝A2",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "渝A25",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "A25",
      "start_offset" : 1,
      "end_offset" : 4,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "A253",
      "start_offset" : 1,
      "end_offset" : 5,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "253",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "253D",
      "start_offset" : 2,
      "end_offset" : 6,
      "type" : "word",
      "position" : 5
    },
    {
      "token" : "53D",
      "start_offset" : 3,
      "end_offset" : 6,
      "type" : "word",
      "position" : 6
    },
    {
      "token" : "53DC",
      "start_offset" : 3,
      "end_offset" : 7,
      "type" : "word",
      "position" : 7
    },
    {
      "token" : "3DC",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "word",
      "position" : 8
    }
  ]
}
POST test/_analyze
{
  "analyzer": "my_analyzer",
  "text":"123456"
}

{
  "tokens" : [
    {
      "token" : "123",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "1234",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "234",
      "start_offset" : 1,
      "end_offset" : 4,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "2345",
      "start_offset" : 1,
      "end_offset" : 5,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "345",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "3456",
      "start_offset" : 2,
      "end_offset" : 6,
      "type" : "word",
      "position" : 5
    },
    {
      "token" : "456",
      "start_offset" : 3,
      "end_offset" : 6,
      "type" : "word",
      "position" : 6
    }
  ]
}

错误提示:

在这里插入图片描述
The difference between max_gram and min_gram in NGram Tokenizer must be less than or equal to: [1] but was [7]. This limit can be set by changing the [index.max_ngram_diff] index level setting。
从ES 7.0 以上,需要从新对 index.max_ngram_diff 进行设置
在这里插入图片描述
重构mapping

PUT test
{
  "settings": {
    "index.max_ngram_diff":8,
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "my_tokenizer"
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "ngram",
          "min_gram": 1,
          "max_gram": 8,
          "token_chars": [
            "letter",
            "digit"
          ]
        }
      }
    }
  }
  , "mappings": {
    "properties": {
      "name":{
        "type": "text",
        "analyzer": "my_analyzer"
      }
    }
  }
}
POST test/_analyze
{
  "analyzer": "my_analyzer",
  "text":"123456"
}
{
  "tokens" : [
    {
      "token" : "1",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "12",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "123",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "1234",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "12345",
      "start_offset" : 0,
      "end_offset" : 5,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "123456",
      "start_offset" : 0,
      "end_offset" : 6,
      "type" : "word",
      "position" : 5
    },
    {
      "token" : "2",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "word",
      "position" : 6
    },
    {
      "token" : "23",
      "start_offset" : 1,
      "end_offset" : 3,
      "type" : "word",
      "position" : 7
    },
    {
      "token" : "234",
      "start_offset" : 1,
      "end_offset" : 4,
      "type" : "word",
      "position" : 8
    },
    {
      "token" : "2345",
      "start_offset" : 1,
      "end_offset" : 5,
      "type" : "word",
      "position" : 9
    },
    {
      "token" : "23456",
      "start_offset" : 1,
      "end_offset" : 6,
      "type" : "word",
      "position" : 10
    },
    {
      "token" : "3",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "word",
      "position" : 11
    },
    {
      "token" : "34",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "word",
      "position" : 12
    },
    {
      "token" : "345",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "word",
      "position" : 13
    },
    {
      "token" : "3456",
      "start_offset" : 2,
      "end_offset" : 6,
      "type" : "word",
      "position" : 14
    },
    {
      "token" : "4",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "word",
      "position" : 15
    },
    {
      "token" : "45",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "word",
      "position" : 16
    },
    {
      "token" : "456",
      "start_offset" : 3,
      "end_offset" : 6,
      "type" : "word",
      "position" : 17
    },
    {
      "token" : "5",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "word",
      "position" : 18
    },
    {
      "token" : "56",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "word",
      "position" : 19
    },
    {
      "token" : "6",
      "start_offset" : 5,
      "end_offset" : 6,
      "type" : "word",
      "position" : 20
    }
  ]
}

延伸:edgeNGram

ngram 的简化版,单个分词,以首字母为起始位置,进行分词
效果如下

PUT test
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "my_tokenizer"
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "edgeNGram",
          "min_gram": 1,
          "max_gram": 8,
          "token_chars": [
            "letter",
            "digit"
          ]
        }
      }
    }
  }
  , "mappings": {
    "properties": {
      "name":{
        "type": "text",
        "analyzer": "my_analyzer"
      }
    }
  }
}
POST test/_analyze
{
  "analyzer": "my_analyzer",
  "text":"123456"
}
{
  "tokens" : [
    {
      "token" : "1",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "word",
      "position" : 0
    },
    {
      "token" : "12",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "word",
      "position" : 1
    },
    {
      "token" : "123",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "word",
      "position" : 2
    },
    {
      "token" : "1234",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "word",
      "position" : 3
    },
    {
      "token" : "12345",
      "start_offset" : 0,
      "end_offset" : 5,
      "type" : "word",
      "position" : 4
    },
    {
      "token" : "123456",
      "start_offset" : 0,
      "end_offset" : 6,
      "type" : "word",
      "position" : 5
    }
  ]
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值