笔记
hand hands
这个作者很懒,什么都没留下…
展开
-
从零开始学Pytorch(第6天)
从零开始学Pytorch(第6天)前言一、损失函数1.MSELoss()二、使用步骤1.引入库2.读入数据总结 前言 今天主要学习损失函数和优化器 提示:以下是本篇文章正文内容,下面案例可供参考 一、损失函数 Pytorch的损失函数有两种实现形式,函数形式(调用torch.nn.functional库中的函数)和模块形式(torch.nn中的模块)。 在实际训练模型时,数据一般以mimi-batch的形式输入神经网络和输出。因为损失函数处理的是标量,因此需要对其进行规约变成标量。一般有两种方法:求和、原创 2020-11-05 21:16:55 · 726 阅读 · 0 评论 -
从零开始学Pytorch(第5天)
从零开始学Pytorch(第5天)前言一、模块类的构建1. nn.Module2.构建一个线性回归类二、使用步骤1.引入库2.读入数据总结 前言 今天主要了解和学习Pytorch中的模块类和计算图、自动求导机制 一、模块类的构建 1. nn.Module Pytorch模型通过继承nn.Module,在类的内部定义子模块实例化, 通过前向计算调用子模块,最后实现深度学习模型的搭建。 import torch.nn as nn class Model(nn.Module): def __ini原创 2020-11-02 21:19:18 · 155 阅读 · 0 评论 -
从零开始学Pytorch(第4天)
从零开始学Pytorch(第4天)前言一、张量的拼接、堆叠、压缩与解压1.torch.cat2.torch.stack3.torch.squeeze\unsqueeze二、张量的矩阵乘法1.torch.mm2.torch.bmm总结 前言 前面这部分对张量的操作太多了,不需要全部掌握,在之后编程中用到后会加深对其的理解,那么今天就对张量的操作做一个结尾,主要针对如下几个函数,cat、stack、unsqueeze 一、张量的拼接、堆叠、压缩与解压 1.torch.cat torch.cat(inputs原创 2020-11-01 11:02:56 · 147 阅读 · 0 评论 -
从零开始学Pytorch(第3天)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 从零开始学Pytorch(第3天)前言一、涉及单个张量的运算二、涉及多个张量的函数运算总结 前言 今天主要学习张量的运算(部分) 一、涉及单个张量的运算 1.张量的平方根,分为内部方法、函数形式和原地操作,前两种方法都不改变张量的值,原地操作改变。 >>t1=torch.rand(3,4) t1.sqrt() #张量的平方根,张量内部方法 tensor([[0.6691, 0.8861, 0.6461, 0.2089],原创 2020-10-31 22:53:17 · 270 阅读 · 2 评论 -
从零开始学Pytorch(第2天)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 从零开始学Pytorch(第2天)一、张量形状的改变二、张量的索引和切片总结 为了更好地学习,从今天开始会多引入一些Pyotrch官方文档的内容,主要是对英文文档的翻译和引用一些例子。 一、张量形状的改变 对张量形状的改变一般使用三种方法:view 、transpose、reshape 1.view:官方文档中的描述如下:view(*shape) → Tensor 返回一个新张量,其数据与自身张量相同,但形状不同。 说的比较直白,就是原创 2020-10-30 22:44:12 · 151 阅读 · 1 评论 -
从零开始学Pytorch(第一天)
从零开始学Pytorch(第一天)写在前面开始学习吧Pytorch简介Pytorch运算的灵魂——张量抛砖引玉——先谈谈向量和矩阵张量张量的数据类型如何创建一个张量小节 写在前面 本人是一名NLP小白,无论是做应用还是写论文的过程中一般都是从网上爬点代码修改修改,但慢慢发现有些力不从心。知其然,更要知其所以然,此决心把Pytorch学到手,之前两个月也断断续续看了不少视频和书籍,但是效果并不好,自己的知识体系要靠自己建立。在此借用博客记录和激励一下自己的学习,如果能对大家有所帮助就更好了。 学习主要参考原创 2020-10-29 17:15:38 · 395 阅读 · 0 评论