【题目描述】
有一棵二叉苹果树,如果数字有分叉,一定是分两叉,即没有只有一个儿子的节点。这棵树共 N 个节点,标号 1 至 N,树根编号一定为 1。
我们用一根树枝两端连接的节点编号描述一根树枝的位置。一棵有四根树枝的苹果树,因为树枝太多了,需要剪枝。但是一些树枝上长有苹果,给定需要保留的树枝数量,求最多能留住多少苹果。
【输入】
第一行两个数 N 和 Q ,N 表示树的节点数,Q 表示要保留的树枝数量。
接下来 N−1 行描述树枝信息,每行三个整数,前两个是它连接的节点的编号,第三个数是这根树枝上苹果数量。
【输出】
输出仅一行,表示最多能留住的苹果的数量。
【输入样例】
5 2
1 3 1
1 4 10
2 3 20
3 5 20
【输出样例】
21
思路
- 设dp[u][i]为u节点上保留i根树枝的至多保留的苹果数,那么转态转移方程便是dp[u][i]=max(dp[u][i],dp[u][i-k-1]+g[u][i].w+dp[v][k])
#include<bits/stdc++.h>
#define read() freopen("input.txt","r",stdin);
#define write() freopen("output.txt","w",stdout);
using namespace std;
const int maxn = 1e3+10;
struct node{ int v,w;};
vector<node>g[maxn];
int n,m;
int dp[maxn][maxn],w[maxn];
void dfs(int u,int root){
for( int i=0; i<g[u].size(); i++ ){
int v=g[u][i].v;
if(v==root) continue;//不能往回搜
dfs(v,u);
for( int j=m; j>=1; j-- ){
for( int k=j-1; k>=0; k-- ){
dp[u][j]=max(dp[u][j],dp[u][j-k-1]+g[u][i].w+dp[v][k]);
}
}
}
}
int main()
{
scanf("%d %d",&n,&m);
for( int i=1; i<n; i++ ){
int u,v,w;scanf("%d %d %d",&u,&v,&w);
g[u].push_back(node{v,w});
g[v].push_back(node{u,w});
}
dfs(1,0);
printf("%d",dp[1][m]);
return 0;
}