1575:【例 1】二叉苹果树

探讨了一道关于二叉树剪枝的问题,利用动态规划方法寻找保留指定数量树枝时的最大苹果数量。通过递归遍历和状态转移方程实现算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

有一棵二叉苹果树,如果数字有分叉,一定是分两叉,即没有只有一个儿子的节点。这棵树共 N 个节点,标号 1 至 N,树根编号一定为 1。

我们用一根树枝两端连接的节点编号描述一根树枝的位置。一棵有四根树枝的苹果树,因为树枝太多了,需要剪枝。但是一些树枝上长有苹果,给定需要保留的树枝数量,求最多能留住多少苹果。

【输入】

第一行两个数 N 和 Q ,N 表示树的节点数,Q 表示要保留的树枝数量。

接下来 N−1 行描述树枝信息,每行三个整数,前两个是它连接的节点的编号,第三个数是这根树枝上苹果数量。

【输出】

输出仅一行,表示最多能留住的苹果的数量。

【输入样例】

5 2
1 3 1
1 4 10
2 3 20
3 5 20

【输出样例】

21

思路

  1. 设dp[u][i]为u节点上保留i根树枝的至多保留的苹果数,那么转态转移方程便是dp[u][i]=max(dp[u][i],dp[u][i-k-1]+g[u][i].w+dp[v][k])
#include<bits/stdc++.h>
#define read() freopen("input.txt","r",stdin);
#define write() freopen("output.txt","w",stdout);
using namespace std;
const int maxn = 1e3+10;
struct node{ int v,w;};
vector<node>g[maxn];
int n,m;
int dp[maxn][maxn],w[maxn];
void dfs(int u,int root){
	for( int i=0; i<g[u].size(); i++ ){
		int v=g[u][i].v;
		if(v==root) continue;//不能往回搜
		dfs(v,u);
		for( int j=m; j>=1; j-- ){
			for( int k=j-1; k>=0; k-- ){
				dp[u][j]=max(dp[u][j],dp[u][j-k-1]+g[u][i].w+dp[v][k]);
			}
		}
	}
}
int main()
{
	scanf("%d %d",&n,&m);
	for( int i=1; i<n; i++ ){
		int u,v,w;scanf("%d %d %d",&u,&v,&w);
		g[u].push_back(node{v,w});
		g[v].push_back(node{u,w});
	}
	dfs(1,0);
	printf("%d",dp[1][m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值