1551:维护序列

【题目描述】

原题来自:AHOI 2009

老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。

有长为 n 的数列,不妨设为 a1,a2,⋯,an 。有如下三种操作形式:

把数列中的一段数全部乘一个值;

把数列中的一段数全部加一个值;

询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模 P 的值。

【输入】

第一行两个整数 n 和 P;

第二行含有 n 个非负整数,从左到右依次为 a1,a2,⋯,an ;

第三行有一个整数 M,表示操作总数;

从第四行开始每行描述一个操作,输入的操作有以下三种形式:

操作 1:1 t g c,表示把所有满足 t≤i≤g 的 ai 改为 ai×c;

操作 2:2 t g c,表示把所有满足 t≤i≤g 的 ai 改为 ai+c;

操作 3:3 t g,询问所有满足 t≤i≤g 的 ai 的和模 P 的值。

同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。

【输出】

对每个操作 3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。

【输入样例】

7 43
1 2 3 4 5 6 7
5
1 2 5 5
3 2 4
2 3 7 9
3 1 3
3 4 7

【输出样例】

2
35
8

【提示】

样例说明:

初始时数列为 {1,2,3,4,5,6,7};

经过第 1 次操作后,数列为 {1,10,15,20,25,6,7};

对第 2 次操作,和为 10+15+20=45,模 43 的结果是 22;

经过第 3 次操作后,数列为 {1,10,24,29,34,15,16};

对第 4 次操作,和为 1+10+24=35,模 43 的结果是 35;

对第 5 次操作,和为 29+34+15+16=94,模 43 的结果是 8。

数据范围与提示:

对于全部测试数据,1≤t≤g≤n,0≤c,ai​≤109,1≤P≤109 。

测试数据规模如下表所示:

数据编号 1 2,3 4 5 6 7 8 9,10
n= 10 103 104 6×104 7×104 8×104 9×104 105
M= 10 103 104 6×104 7×104 8×104 9×104 105

#include<bits/stdc++.h>
#define read() freopen("input.txt","r",stdin);
#define write() freopen("output.txt","w",stdout);
using namespace std;
const int maxn = 1e5+10;
typedef long long ll;
ll sum[maxn*4],lazy_add[maxn*4],lazy_mul[maxn*4],num[maxn],p;
#define lson (k<<1)
#define rson (k<<1|1)
#define mid ((l+r)>>1)
inline void add(int v,int l,int r,int k){
	lazy_add[k]=(lazy_add[k]+v%p)%p;
	sum[k]=(sum[k]+(ll)v*(r-l+1)%p)%p;
}
inline void mul(int v,int l,int r,int k){
	lazy_mul[k]=(lazy_mul[k]*v)%p;
	lazy_add[k]=(lazy_add[k]*v)%p;
	sum[k]=(sum[k]*v)%p;
}
inline void pushdown(int m,int l,int r,int k){
	if(lazy_mul[k]!=1){
		mul(lazy_mul[k],l,m,lson);
		mul(lazy_mul[k],m+1,r,rson);
		lazy_mul[k]=1;
	}
	if(lazy_add[k]!=0){
		add(lazy_add[k],l,m,lson);
		add(lazy_add[k],m+1,r,rson);
		lazy_add[k]=0;
	}
}
inline void build(int l,int r,int k){
	sum[k]=0;lazy_add[k]=0;lazy_mul[k]=1;
	if(l==r){
		sum[k]=num[l];return;
	}
	build(l,mid,lson);
	build(mid+1,r,rson);
	sum[k]=(sum[lson]+sum[rson])%p;
}
inline void update(int ul,int ur,int v,int l,int r,int k,int flag){
	if(ul<=l&&r<=ur){
		if(!flag) return add(v,l,r,k);
		else return mul(v,l,r,k);
	}
	pushdown(mid,l,r,k);
	if(ul<=mid) update(ul,ur,v,l,mid,lson,flag);
	if(mid<ur) update(ul,ur,v,mid+1,r,rson,flag);
	sum[k]=(sum[lson]+sum[rson])%p;
}
inline ll query(int ql,int qr,int l,int r,int k){
	if(ql<=l&&r<=qr) return sum[k];
	pushdown(mid,l,r,k);
	ll ans=0;
	if(ql<=mid) ans=(ans+query(ql,qr,l,mid,lson))%p;
	if(mid<qr) ans=(ans+query(ql,qr,mid+1,r,rson))%p;
	return ans%p;
}
int main()
{
    read();write();
	int n,m;scanf("%d %lld",&n,&p);
    for( int i=1; i<=n; i++ ) scanf("%lld",&num[i]);
    build(1,n,1);
    scanf("%d",&m);
    for( int i=0; i<m; i++ ){
    	int op,a,b;scanf("%d %d %d",&op,&a,&b);ll vau;
    	if(op==1){
    		scanf("%lld",&vau);update(a,b,vau,1,n,1,1);
		} 
		if(op==2){
			scanf("%lld",&vau);update(a,b,vau,1,n,1,0);
		}
    	else if(op==3) printf("%lld\n",query(a,b,1,n,1));
	}
	return 0;
}
Problem Description 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成。 有长为N的数列,不妨设为a1,a2,…,aN 。有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一段数全部加一个值; (3)询问数列中的一段数的和,由于答案可能很大,你只需输出这个数模P的值。 Input 第一行两个整数N和P(1≤P≤1000000000)。第二行含有N个非负整数,从左到右依次为a1,a2,…,aN, (0≤ai≤1000000000,1≤i≤N)。第三行有一个整数M,表示操作总数。从第四行开始每行描述一个操作,输入的操作有以下三种形式: 操作1:“1 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai×c (1≤t≤g≤N,0≤c≤1000000000)。 操作2:“2 t g c”(不含双引号)。表示把所有满足t≤i≤g的ai改为ai+c (1≤t≤g≤N,0≤c≤1000000000)。 操作3:“3 t g”(不含双引号)。询问所有满足t≤i≤g的ai的和模P的值(1≤t≤g≤N)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。 Output 对每个操作3,按照它在输入中出现的顺序,依次输出一行一个整数表示询问结果。 Sample Input 7 43 1 2 3 4 5 6 7 5 1 2 5 5 3 2 4 2 3 7 9 3 1 3 3 4 7 Sample Output 2 35 8 样例说明: 初始时数列为(1,2,3,4,5,6,7)。 经过第1次操作后,数列为(1,10,15,20,25,6,7)。 对第2次操作,和为10+15+20=45,模43的结果是2。 经过第3次操作后,数列为(1,10,24,29,34,15,16} 对第4次操作,和为1+10+24=35,模43的结果是35。 对第5次操作,和为29+34+15+16=94,模43的结果是8。 #include<iostream> using namespace std; int main() { int n,p; int a[1000001]; int l;int i,j; int x;int t,g,c; while(scanf("%d%d",&n,&p)!=0) { for(i=1;i<=n;i++) { cin>>a[i]; } cin>>l; for(i=0;i<l;i++) { cin>>x; if(x==1)//ai*c { cin>>t>>g>>c; for(j=t;j<=g;j++) { a[j]=a[j]*c; } } if(x==2)//a[i]+c { cin>>t>>g>>c; for(j=t;j<=g;j++) { a[j]=a[j]+c; } } if(x==3) { int sum=0; cin>>t>>g; for(j=t;j<=g;j++) { sum=sum+a[j]; } cout<<sum%p<<endl; } } } return 0; }
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页