约数个数和定理

约数个数定理
对于如何快速求一个数内有多少个数是他的约数,有一种公式

假设对于 X 他的素数约数为 p1,p2,p3…pn

X = (p1^a1) * (p2a2)*…(pnan)

因为 p1,p2,p3…pn都是素数因数,我们可以认为他们是组成 X 最下的一个因子部分,那么我们通过多次选择这些素数相乘不就可以得出全部的约数了吗。

那么根据排列组合思想 p1 选 t1 次,p2选 t2 次,p3 选 t3 次。。。。以此类推(如果不选就是选0次)由于是一步一步的选的,所以如果想统计全部约数个数,那么这些步骤要相乘。

t = t1 * t2 * t3 * t4*…tn 那么t1 t2 t3 这些东西又怎么得到呢。。。

我们惊讶的发现 a1 a2 这些数字,举个例子 a1 代表了 p1 最多被选 a1 次 如果超出 a1 那么很明显结果就不是 X 了,那么我们发现算上不选那个结果, p1 可以由 a1 + 1 种选择方案, t1 = ( a1 + 1 )

那么约数个数公式就有了

根据 X = (p1^a1) * (p2a2)*…(pnan)

T = ( a1 + 1 ) * ( a2 + 1 ) * ( a3 + 1 )… * ( an + 1 ) ( a1,a2,a3…an 位 p1,p2,p3…pn的系数)
以上就是理论性的东西参考了网上的资源接下来是实现代码:

ll getnum(ll n) 
{
    ll res=1;
    if(n==1) 
      return 1;
    for(ll i=2;i*i<=n;i++)//这里还可以用埃及筛法降低预处理打表素数,在处理。
    {
        ll k=0;
        while(n%i == 0)
        {
            n = n/i;
            k++;
        }
        if(k) 
            res *= (k+1);
    }
    if(n != 1) res=res*2;
    if(res==1)
    {
        return 2;
    }
    return res;
}

约数和定理
先直接上公式

f(n)=(p10+p11+p12+…p1a1)(p20+p21+p22+…p2a2)…(pk0+pk1+pk2+…pkak)。

用二项式定理思路去看这个公式 p1^x1 * p2^x2 * p3x3…pnxn

代表了每个可能的约数相加。。有了上边的基础这个公式就很好想了。。。

当然实现的时候如果暴力求解很显然有点麻烦。。我们优化一下

对于 p10,p12…p1^a1 这就是个等比数列求和啊 直接套用公式。。。。
代码:

ll qpow(ll x, ll y)//先手搓一个快速幂
{
    ll res = 1;
    while(y)
    {
        if(y&1) 
            res *= x;
        x *= x;
        y >>= 1 ;
    }
    return res;
}
 
ll getsum(ll n)//约数和.
{
    ll res=1;
    for(ll i=2;i*i<=n;i++)
    {
        ll k=0;
        while(n%i == 0)
        {
            n = n/i;
            k++;
        }
        res *= ((1-qpow(i,k+1))/(1-i));
    }   
    if(n != 1) res *= (1 + n);
    return res;
}
### 约数定理的数学定义 约数定理描述了一个正整数 \( n \) 的所有正除数之可以通过其素因数分解来表示。假设 \( n \) 可以被唯一分解为如下形式: \[ n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k} \] 其中,\( p_1, p_2, \dots, p_k \) 是不同的素数,而 \( e_1, e_2, \dots, e_k \) 是它们对应的幂次,则 \( n \) 的所有正除数之可以用以下公式表达[^3]: \[ \sigma(n) = (1 + p_1 + p_1^2 + \cdots + p_1^{e_1})(1 + p_2 + p_2^2 + \cdots + p_2^{e_2}) \cdots (1 + p_k + p_k^2 + \cdots + p_k^{e_k}) \] 这个公式利用了几何级数求的结果。 --- ### 应用场景 #### 1. **完美数的研究** 完美数是指等于其真因子(即除了自己以外的所有正因子)之的自然数。例如,6 28 都是完美数。对于给定的一个数 \( n \),如果满足条件 \( \sigma(n) - n = n \),则该数是一个完美数。这表明约数函数可以直接用于验证完善数理论中的性质。 #### 2. **密码学领域** 在 RSA 加密算法中,大整数的因数分解问题是核心之一。虽然 RSA 并不直接涉及约数的概念,但是理解如何高效地处理与整数相关的操作有助于优化加密系统的性能。此外,在某些特定情况下,约数可能间接影响到模运算的设计[^4]。 #### 3. **组合计数问题** 当解决一些复杂的排列组合或者分配类题目时,可能会遇到需要枚举某范围内的所有整数及其对应因子的情况。此时运用约数定理能够快速得出答案而不必逐一尝试每一个候选值。 #### 4. **数值分析与科学计算** 使用高级编程语言如 Python 或 C++ 实现基于矩阵的操作时常会涉及到对数据结构内部元素间相互作用的理解;同样地,在构建大型稀疏矩阵的过程中也可能需要用到关于数字之间关系的知识——比如通过预先知道哪些位置应该填充零从而节省存储空间并提高效率[^5]。 ```python def divisor_sum(n): """ 计算正整数 n 的所有正除数之 """ factors = [] temp_n = n # 找出所有的素因数以及其次方次数 i = 2 while i * i <= temp_n: count = 0 while (temp_n % i == 0): count += 1 temp_n //= i if count > 0: factors.append((i, count)) i += 1 if temp_n > 1: factors.append((temp_n, 1)) result = 1 for prime, exp in factors: sum_of_powers = sum(prime**j for j in range(exp + 1)) result *= sum_of_powers return result print(divisor_sum(12)) # 输出应为 28 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值