隐私计算架构
隐私求交(Private Set Intersection,PSI):是指在两个或多个数据集之间查找共同的元素,而不需要泄露数据集的详细信息。
隐匿查询:也称隐私信息检索,是指查询方隐藏被查询对象关键词或客户id信息,数据服务方提供匹配的查询结果却无法获知具体对应哪个查询对象。数据不出门且能计算,杜绝数据缓存的可能性。
隐私计算的底层算法架构是由一系列算法和技术组成的,用于实现数据的隐私保护和安全计算。下面是一些常见的隐私计算底层算法架构的组成部分:
加密算法:如对称加密、非对称加密等,用于对数据进行加密和解密,确保数据的机密性。
哈希函数:用于数据的完整性验证和消息认证,确保数据在传输过程中没有被篡改。
同态加密:允许在加密数据上进行计算,而不需要解密数据,保护数据的隐私。
安全多方计算:通过多方之间的协作计算,在不泄露各方数据的情况下得到计算结果。
零知识证明:一方可以向另一方证明某个陈述是正确的,而不透露任何额外的信息。
差分隐私:在数据分析中添加噪声,使得即使攻击者获得了部分数据,也无法推断出个体的具体信息。
联邦学习:在多个数据拥有者之间进行模型训练,而不需要共享原始数据。这些底层算法架构共同作用,为隐私计算提供了坚实的技术基础。不同的隐私计算技术和平台可能会根据具体需求和应用场景选择和组合不同的算法。