快速幂算法

快速幂

快速幂,二进制取幂(Binary Exponentiation,也称平方法),是一个在 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 的时间内计算 a n a^n an 的小技巧,而暴力的计算需要 Θ ( n ) \Theta(n) Θ(n) 的时间。

算法描述

计算 a a a n n n 次方表示将 n n n a a a 乘在一起: a n = a × a ⋯ × a ⏟ n  个 a a^{n} = \underbrace{a \times a \cdots \times a}_{n\text{ 个 a}} an=n  a a×a×a

然而当 a , n a,n a,n 太大的时侯,这种方法就不太适用了。

不过我们知道: a b + c = a b ⋅ a c ,    a 2 b = a b ⋅ a b = ( a b ) 2 a^{b+c} = a^b \cdot a^c,\,\,a^{2b} = a^b \cdot a^b = (a^b)^2 ab+c=abac,a2b=abab=(ab)2

二进制取幂的想法是,我们将取幂的任务按照指数的 二进制表示 来分割成更小的任务。

首先我们将 n n n 表示为 2 进制,举一个例子:

3 13 = 3 ( 1101 ) 2 = 3 8 ⋅ 3 4 ⋅ 3 1 3^{13} = 3^{(1101)_2} = 3^8 \cdot 3^4 \cdot 3^1 313=3(1101)2=383431

因为 n n n ⌊ log ⁡ 2 n ⌋ + 1 \lfloor \log_2 n \rfloor + 1 log2n+1 个二进制位,因此当我们知道了 a 1 , a 2 , a 4 , a 8 , … , a 2 ⌊ log ⁡ 2 n ⌋ a^1, a^2, a^4, a^8, \dots, a^{2^{\lfloor \log_2 n \rfloor}} a1,a2,a4,a8,,a2log2n 后,我们只用计算 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 次乘法就可以计算出 a n a^n an

于是我们只需要知道一个快速的方法来计算上述 3 的 2 k 2^k 2k 次幂的序列。这个问题很简单,因为序列中(除第一个)任意一个元素就是其前一个元素的平方。举一个例子:

因此为了计算 3 13 3^{13} 313 ,我们只需要将对应二进制位为 1 的整系数幂乘起来就行了:

3 13 = 6561 ⋅ 81 ⋅ 3 = 1594323 3^{13} = 6561 \cdot 81 \cdot 3 = 1594323 313=6561813=1594323

将上述过程说得形式化一些,如果把 n n n 写作二进制为 ( n t n t − 1 ⋯ n 1 n 0 ) 2 (n_tn_{t-1}\cdots n_1n_0)_2 (ntnt1n1n0)2 ,那么有:

n = n t 2 t + n t − 1 2 t − 1 + n t − 2 2 t − 2 + ⋯ + n 1 2 1 + n 0 2 0 n = n_t2^t + n_{t-1}2^{t-1} + n_{t-2}2^{t-2} + \cdots + n_12^1 + n_02^0 n=nt2t+nt12t1+nt22t2++n121+n020

其中 n i ∈ 0 , 1 n_i\in{0,1} ni0,1 。那么就有

a n = ( a n t 2 t + ⋯ + n 0 2 0 ) = a n 0 2 0 × a n 1 2 1 × ⋯ × a n t 2 t \begin{aligned} a^n & = (a^{n_t 2^t + \cdots + n_0 2^0})\\\\ & = a^{n_0 2^0} \times a^{n_1 2^1}\times \cdots \times a^{n_t2^t} \end{aligned} an=(ant2t++n020)=an020×an121××ant2t

根据上式我们发现,原问题被我们转化成了形式相同的子问题的乘积,并且我们可以在常数时间内从 2 i 2^i 2i 项推出 2 i + 1 2^{i+1} 2i+1 项。

这个算法的复杂度是 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 的,我们计算了 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 2 k 2^k 2k 次幂的数,然后花费 Θ ( log ⁡ n ) \Theta(\log n) Θ(logn) 的时间选择二进制为 1 对应的幂来相乘。

例题

[剑指offer]数值的整数次方

题目描述

给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。

保证base和exponent不同时为0

解答

快速幂算法

public class Solution {
  public double Power(double base, int exponent) {
        if (exponent == 0)
            return 1.0;
        if (Math.abs(base) < 0.0000001) {  //判断base是否等于0
            if (exponent < 0) {
                throw new RuntimeException();
            } else {
                return 0.0;
            }
        }
        int e = Math.abs(exponent); //不管幂的正负,给e一个正数
        double temp = 1.0;
        while (e != 0) {
            temp = (e & 1) != 0 ? temp * base : temp; 
            //如果当前次幂的最后一位(二进制数)不为0,将当前权重加入答案
            
            base *= base; //权重增加
            e = e >> 1; //二进制右移一位
        }
        return exponent > 0 ? temp : 1 / temp; //判断幂的正负
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值