常用的统计模型

1.广义线性模型(是多数监督机器学习方法的基础,如逻辑回归和Tweedie回归)

2.时间序列方法(ARIMA ,SSA,基于机器学习的方法)

3.结构方程建模(针对潜变量之间关系进行建模)

4.因子分析(调查设计和验证的探索型分析)

5.功效分析/实验分析(特别是基于仿真的实验设计,以避免分析过度)

6.非参数检验(MCMC)
7.K均值聚类

8.贝叶斯方法(朴素贝叶斯、贝叶斯模型平均/Bayesian model averaging、贝叶斯适应型实验/Bayesian adaptive trials)

9.惩罚性回归模型(弹性网络/Elastic Net,LASSO,LARS),以及对通用模型(SVM\XGboost等)加惩罚,这对于预测变量多与观测值的数据很有用,在基因组学和社会科学研究中较为常用。

10.样条模型/SPline-based models(MARS等):主要用于流程建模。

11.马尔可夫链和随机过程(时间序列建模和预测建模的替代方法)

12.缺失数据插补方法及其假设(missFores,MICE)

13.生存分析/survival analysis(主要特点是考虑了每个观测出现某一结局的时间长短)

14.混合建模

15.统计推理和组群测试

建议读者根据自己所学领域重点学习面向特定领域的专用模型

##以上内容均来自《python 编程从数据分析到数据科学》

Python是数据科学和机器学习领域中非常流行的语言,其中有许多强大的库支持概率论和统计模型的实现。其中两个核心库是NumPy和SciPy,它们提供了大量的数学函数和算法,而更高级的库如Pandas用于数据处理,matplotlib和seaborn则用于数据可视化。 在概率论方面,你可以使用: 1. `numpy.random`模块:提供了各种随机数生成器,如均匀分布、正态分布等。 2. `scipy.stats`模块:包含许多概率分布和统计测试函数,比如计算累积分布函数(CDF)、概率密度函数(PDF)或进行假设检验。 3. `statsmodels`库:提供更高级的统计模型,如线性回归、时间序列分析、以及各种假设检验。 在统计模型方面,有: 1. `sklearn`(scikit-learn):这是机器学习的基础库,包含了诸如线性回归、决策树、聚类算法、分类器等常用统计模型。 2. `pandas`的数据框结构非常适合数据探索和预处理,这对于构建统计模型至关重要。 3. `pyMC3`和`Stan`:用于构建和估计贝叶斯模型的库,支持概率编程。 4. `TensorFlow Probability`或`Edward`:如果你需要在深度学习背景下使用概率模型,这些库提供了概率图模型和自动概率编程功能。 如果你对某个特定的统计模型或概率方法感兴趣,例如贝叶斯网络、马尔可夫链蒙特卡洛(MCMC)或时间序列分析,请告诉我,我可以为你提供更详细的介绍和代码示例。另外,还有许多用于机器学习的高级库,如`Keras`和`TensorFlow`,它们也支持概率相关的组件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值