codeup|问题 A: 复原二叉树

题目描述
小明在做数据结构的作业,其中一题是给你一棵二叉树的前序遍历和中序遍历结果,要求你写出这棵二叉树的后序遍历结果。
输入
输入包含多组测试数据。每组输入包含两个字符串,分别表示二叉树的前序遍历和中序遍历结果。每个字符串由不重复的大写字母组成。
输出
对于每组输入,输出对应的二叉树的后续遍历结果。
样例输入 Copy
DBACEGF ABCDEFG
BCAD CBAD
样例输出 Copy
ACBFGED
CDAB

代码

#include<stdio.h>
#include<string.h>
#include<queue>
#include<iostream>

using namespace std;
const int maxn = 50;

struct node {
    char data;
    node *lchild;
    node *rchild;
};

char pre[maxn], in[maxn], post[maxn];//分别代表前序、中序、后序
int n;//结点个数

node *create(int preL, int preR, int inL, int inR) {//当前线序序列区间为[preL,preR],中序序列区间为[inL,inR]
    if (preL > preR) return NULL;
    node *root = new node;//新建一个结点,用来存放二叉树的根节点
    root->data = pre[preL];
    int k;
    for (k = inL; k <= inR; k++) {
        if (in[k] == pre[preL]) break;//在中序序列中找到in[k]==pre[L]的结点
    }
    int numLeft = k - inL;//左子树的结点个数
    //左子树的先序区间为[preL+1,preL+numLeft],中序序列为[inL,k-1]
    root->lchild = create(preL + 1, preL + numLeft, inL, k - 1);
    //右子树的先序区间为[pre+numLeft+1,preR],中序序列为[k+1,inR]
    root->rchild = create(preL + numLeft + 1, preR, k + 1, inR);
    return root;//返回根节点地址
}

int num = 0;//已输出结点的个数

//void BFS(node* root){
//    queue<node*> q;//注意队列里是地址
//    q.push(root);//将根节点地址入队
//    while(!q.empty()){
//        node* now=q.front();//取出队首元素
//        q.pop();
//        printf("%c",now->data);
//        num++;
//        if(num<n) printf(" ");
//        if(now->lchild!=NULL) q.push(now->lchild);//左子树非空
//        if(now->rchild!=NULL) q.push(now->rchild);//右子树非空
//    }
//}

void postorder(node *root) {
    if (root == NULL) return;
    postorder(root->lchild);
    postorder(root->rchild);
    printf("%c", root->data);
}

int main() {
    node *root;
    while (cin >> pre >> in) {
        int len = strlen(pre);
        root = create(0, len - 1, 0, len - 1);
        postorder(root);
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值