2024美赛E题保姆级分析完整思路代码数据教学

本文详细解析了2024年美国大学生数学建模竞赛E题,关注财产保险的可持续性,通过数学模型分析极端天气对保险业的影响,介绍如何运用统计模型、机器学习和风险理论来评估保险风险并制定策略。着重讲解了数据预处理、模型选择与构建、验证等关键步骤。
摘要由CSDN通过智能技术生成

2024美国大学生数学建模竞赛E题保姆级分析完整思路代码数据教学

E题:Sustainability of Property Insurance(财产保险的可持续性)

这道题目同样是比赛的热门题目,是很多同学在训练的时候经常做的题目类型了,属于大数据、数据分析类题目,同时也是团队擅长的题目。需要一定的建模能力,和其他赛事赛题类型类似,建议大家(各个专业均可)进行选择。这道题目开放度较高,难度较易,是本次比赛获奖的首选题目。推荐所有专业同学选择门槛较低且开放度也相对较高。

从给定的背景信息中,我们知道激烈的天气事件正成为房地产所有者和保险商的危机。全球已经承受了超过1万亿美元的损失,来自近年来超过1000次的极端天气事件。预计由于洪水、飓风、旋风、干旱和野火等引起的严重天气相关事件的损失将会增加。财产保险不仅越来越昂贵,而且越来越难找到,因为保险公司正在改变他们愿意承保策略的方式和地点。另外,全球平均的保险保护缺口为57%,并且正在增长。

问题一主要目标是为保险公司开发一个模型,以确定他们是否应该在极端天气事件数量不断增加的地区承保保单。为了实现这一目标,所要做的具体内容可以分为以下几个步骤:

识别两个曾经经历过极端天气事件的地理区域,这些区域将作为模型的验证数据集,用于检验模型的预测能力。

根据历史天气事件和相关损失数据,建立数学模型来评估未来的风险,决定是否在特定地区提供保险。

利用模型预测风险,并根据预测结果进行决策:是否提供保险,以及保险费用多少。

解决此类问题常见的方法包括利用统计模型和机器学习算法,具体选取哪种算法需要进一步研究。接下来我将列举部分可能适用的方法:

l 统计模型:例如使用泊松回归或负二项回归处理计数数据;如果涉及到时间序列数据,可能会用到ARIMA模型或者状态空间模型。

l 机器学习算法:回归分析、随机森林、支持向量机(SVM)、神经网络等可能被考虑用于预测风险。

l 深度学习算法:如果有大量的数据,可能考虑使用深度学习的方法,比如卷积神经网络(CNN)或循环神经网络(RNN)等。

l 风险理论:在保险业领域,风险理论被广泛用于评估风险和确定保费。基本的模型包括纯保费原则和期望效用原则等。

这里重点讲讲风险理论,应该是最适用于本道题目的方法。

问题一分析:第一问主要需要对保险业务和极端天气事件进行处理。首先,让我们理解题目给出的情境,并确定需要解决的关键问题:

l 保险公司如何在面临极端天气事件数量增加的区域决定是否承保保单?

l 如何调整保险模式来评估在哪里、如何以及是否在某些地点上建立保险?

l 如何为社区领导人制定一种保护模式来确定他们应该采取多大的措施来保护其社区内的建筑?

对于这类问题,可以使用风险模型,下面是一般步骤:

第一步:数据收集与预处理

获取或生成有关极端天气事件频率、严重程度、影响范围等的数据。同时,收集相关的保险成本、赔付、保费等信息。预处理过程中,要对数据进行清洗、缺失值的处理、异常值的检测等操作。

第二步:模型选择

选择适合的风险模型进行分析。常见的风险模型包括VaR (Value-at-Risk) 模型、ES (Expected Shortfall) 模型等。具体选择哪种模型需要根据实际情况和数据特性来定。

第三步:模型建立

结合收集到的数据,根据选定模型,构造一个反映天气风险和保险风险的综合模型。例如,可以将天气风险建模为随机过程,然后通过仿真方法来估计未来的保险损失。

第四步:结果分析

运行模型并分析结果。这可以帮助我们理解在不同的天气条件下保险公司的风险状况,由此决定保险公司是否应承保,以及保费应设定为多少。同时,也能提供关于如何调整保险模式、保护社区建筑的建议。

第五步:模型验证

选择一些实际的案例进行模型验证,比对模型预测结果和实际数据,评价模型的有效性和准确性。

问题二分析:问题二涉及如何调整保险模式来评估在哪里、如何以及是否在某些地点上建立保险?下面是具体做法流程:

第一步:数据收集与预处理

基于你提供的背景,我们可以知道区域天气事件、房产价值、房产数量等都是影响保险费用的重要因素。因此,首先需要搜集这些数据。在预处理阶段,我们会对数据做清洗、归一化、缺失值处理等操作。

第二步:构建风险评估模型

模型可以分为两部分:

l 极端天气风险评估模型:根据历史极端天气事件的发生频率和强度,预测未来某地的天气风险。常用的模型有泊松过程模型、马尔科夫链模型等。

l 财产损失评估模型:根据房产的价值、数量以及天气风险,预测可能产生的保险损失。常用的模型有线性回归模型、决策树模型等。

这两个模型的参数可以通过一种优化算法(如梯度下降、遗传算法)进行求解。

第三步:模型求解

将收集到的数据代入模型中,运行优化算法,得到模型的参数。

第四步:模型验证和调整

使用部分实际数据验证模型的准确性,并进行必要的调整。

由以上建模过程,我们可以计算出每个地点的保险风险值。结合保险公司的风险承受能力,我们可以确定在哪些地方应该建立保险,以及如何定价。下面来分析一下,决策树模型做这道题的财产损失评估模型该如何做。

决策树模型可以被用来进行财产损失评估。决策树是一种监督学习算法,主要用于分类问题,但它也可用于回归问题。该模型以树形结构存在,其中每一个内部节点代表一个特征(或属性),每一个分支代表一个决策规则,而每一个叶节点代表一个输出(或结果)。

以下为使用决策树模型的步骤:

第一步:数据预处理

我们需要准备和清洗数据,包括处理缺失值、异常值、对数据进行归一化等操作。

第二步:建立决策树模型

创建决策树模型时,我们需要选择分裂特征和分裂点。这通常通过某种度量来实现,例如基尼不纯度、信息增益或均方误差等。

第三步:训练模型

利用我们收集的数据对模型进行训练。这一步通常涉及到优化算法,如梯度下降。

第四步:验证模型

最后,我们需要验证模型的准确性。这可以通过留出法、交叉验证法或者自助法等方法来进行。

以上述的方式,我们可以基于既有的极端天气事件数据、房产价值和房产数量,预测可能产生的保险损失。然后,根据预测结果,我们可以做出相应的保险策略调整。

其中更详细的思路,各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方群名片哦!

2023五一杯数学建模b保姆思路代码:快递需求分析。 首先,我们可以采用Python编程语言来解决这个问。我们需要使用一些常用的数据分析库,例如Numpy和Pandas。 代码实现思路如下: 1. 首先,我们需要导入所需的库: import numpy as np import pandas as pd 2. 接下来,读取数据集并进行预处理: data = pd.read_csv('data.csv') # 读取数据集 data['日期'] = pd.to_datetime(data['日期']) # 将日期转换为标准格式 3. 对快递需求进行分析: 3.1 计算每日总需求量: data['总需求量'] = data['订单数量'].groupby([data['日期']]).transform('sum') 3.2 计算每月平均需求量: data['月平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.month]).transform('mean') 3.3 计算每周平均需求量: data['周平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.week]).transform('mean') 4. 进行需求分析: 4.1 计算每个月的需求波动情况: data['需求波动'] = data['总需求量'] - data['月平均需求量'] 4.2 计算每个周的需求波动情况: data['周需求波动'] = data['总需求量'] - data['周平均需求量'] 5. 可以根据需求波动情况,进行快递员人数的调整以满足不同时间段的需求波动情况。 以上就是解决2023五一杯数学建模b保姆思路代码的大致思路。当然,具体的代码实现还需要根据目要求和数据集进行进一步的调整和优化。同时,在实际问中,我们还可以利用数据可视化工具如Matplotlib将分析结果以图表的方式展示出来,更直观地展示快递需求的变化趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值