人工智能在语音和图像处理方面,主要有哪些突破?

人工智能在语音方面的突破

小米电视日前推出主打”高性价比”的全球首款人工智能语音电视小米电视4A,只需一个语音按键,便可实现关键词搜索、热度排行、开启应用游戏等10类语音交互功能。无独有偶,长虹近期推出CHiQ人工智能电视新品Q5N和OLED电视新品Q5A系列,主打的功能还是语音控制。

实际上,在市面上海尔、TCL等已经推出了所谓的可进行语音搜索的人工智能电视。小米电视最重磅的功能是支持人工智能语音控制,号称老人孩子都能使用,可以用很自然的语言对电视进行声控。

智能语音正在向着私人助理机器人方向快速发展,在大数据、人工智能、机器学习等技术的支撑下,可为每个人量身定制自己的个性化私人助理。

私人助理会根据用户的行为和使用习惯,帮助用户网上购物、安排出行、调整设备、智能提醒、聊天解闷。

私人助理可以提供越来越多的线下生活服务,如订餐厅、订外卖、购买电影票、医院预约等操作。

人工智能在图像处理方面的突破

过不了多久,所有人都可以通过人工智能对一张图片或是对视频进行复杂的处理。举个栗子,SmileVector 是一个推特机器人,

可以生成任何明星照片微笑的动图,如果输入一张人脸图片,它可以通过深度学习神经网络生成它们微笑的表情。

虽然这些图片也许并不完美,但它们完全是自动生成的,这是人工智能在图像处理领域的又一进步。

也许不久之后,图片、声音和视频造假都将变得容易。想象一下,假如新版本的 Photoshop 可以像用 Word 编辑文字一样轻松编辑图片,

你还会相信自己的眼睛吗?

Smile Vector 只是新技术的冰山一角,我们很难对现代人工智能多媒体处理技术做出全面的概述,但我们能够找出其中一些有意思的应用。

例如:从一张 2D 图片中创建 3D 面部模型;使用人类「模型」实时改变视频中人物的面部表情;改变图片中的光源和阴影;

为无声视频自动生成声音;在总统选举直播中让特朗普变成秃头;用视频剪辑「复活」朋友等等。这些事例只是其中的一小部分。

人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
人工智能快速发展的今天,语音识别现在发展到什么阶段了?
http://www.duozhishidai.com/article-2278-1.html
智能语音技术,主要面临哪些挑战?
http://www.duozhishidai.com/article-1927-1.html
语音的识别过程主要分哪几步,常用的识别方法是什么?
http://www.duozhishidai.com/article-1739-1.html
图像识别技术是什么?从实战告诉你答案
http://www.duozhishidai.com/article-15750-1.html
图像识别经历了哪几个阶段,主要应用在哪些领域?
http://www.duozhishidai.com/article-6461-1.html


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

多智时代-人工智能大数据学习入门网站|人工智能、大数据、云计算、物联网的学习服务的好平台
智能图像处理技术 作者:李弼程 出版社:电子工业出版社 ISBN:712100047 原价: ¥32 图书简介 本书主要论述了智能图像处理技术,系统介绍了智能图像处理技术的有代表性的思想、算法与应用,跟踪了图像处理技术的发展前沿。全书共分为15章,重点讨论了图像边缘检测、图像分割、图像特征分析、图像配准、图像融合、图像分类、图像识别、基于内容的图像检索与图像数字水印。此外,为了内容的完整性,本书还介绍了图像预处理技术,如图像采集、图像变换、图像增强、图像恢复、图像编码与压缩。  图书目录 第1章 绪论 1.1 图像图像处理的概念 1.2 数字图像处理研究的内容 1.2.1 传统的图像处理技术 1.2.2 智能图像处理技术 1.3 数字图像处理系统 1.4 数字图像处理的应用 1.5 人的视觉系统与色度学基础 1.5.1 人的视觉系统 1.5.2 色度学基础 1.6 本书的安排 本章参考文献第2章 图像采集 2.1 图像数字化 2.1.1 图像的数学模型 2.1.2 采样与量化 2.2 量化技术 2.2.1 标量量化 2.2.2 矢量量化 2.2.3 LBG算法与初始码书设计 2.3 图像输入 2.3.1 图像采集系统 2.3.2 图像输入设备 2.4 图像文件格式 2.4.1 BMP(位图)文件格式 2.4.2 GIF文件格式 2.4.3 JPEG文件格式 本章参考文献 第3章 图像变换 3.1 傅里叶变换 3.1.1 一维傅里叶变换 3.1.2 二维傅里叶变换 3.1.3 二维离散傅里叶变换的性质 3.1.4 正交变换的基本概念 3.2 离散余弦变换 3.2.1 离散余弦变换的定义 3.2.2 离散余弦变换的快速实现 3.3 K-L变换 3.3.1 K-L变换的定义 3.3.2 K-L变换的性质 3.4 小波变换 3.4.1 连续小波变换 3.4.2 二进小波变换 3.4.3 离散小波变换 3.5 其他可分离变换 3.5.1 沃尔什变换 3.5.2 哈达玛变换 3.5.3 斜变换 本章参考文献 第4章 图像增强 4.1 空间域单点增强 4.1.1 灰度变换 4.1.2 直方图修正 4.2 图像平滑 4.2.1 噪声门限法 4.2.2 邻域平均法 4.2.3 加权平均法 4.2.4 中值滤波 4.2.5 掩膜平滑法 4.2.6 空间低通滤波 4.3 图像锐化 4.3.1 微分算子方法 4.3.2 Sobel算子 4.3.3 拉普拉斯算子 4.3.4 统计差值法 4.3.5 掩膜匹配法 4.3.6 空间高通滤波 4.4 图像滤波 4.4.1 低通滤波 4.4.2 同态滤波 4.4.3 高通滤波 4.5 彩色增强 4.5.1 假彩色处理 4.5.2 伪彩色处理 本章参考文献 第5章 图像恢复 5.1 图像退化的数学模型 5.1.1 图像退化模型 5.1.2 点冲激函数的退化模型 5.1.3 连续图像退化模型 5.1.4 离散图像的退化模型 5.1.5 离散退化模型的求解 5.2 无约束图像恢复 5.2.1 最小二乘估计 5.2.2 运动模糊图像的恢复 5.3 有约束图像恢复 5.3.1 有约束的最小二乘图像恢复 5.3.2 维纳滤波 5.3.3 功率谱均衡恢复 5.3.4 有约束最小平方恢复 5.4 图像几何校正 5.4.1 几何校正方法 5.4.2 空间几何坐标变换 5.4.3 重采样 本章参考文献 第6章 图像编码与压缩 6.1 图像编码基础 6.1.1 数据压缩的概念 6.1.2 图像压缩的性能评价 6.2 统计编码 6.2.1 编码效率与冗余度 6.2.2 霍夫曼编码 6.2.3 香农-费诺编码 6.2.4 算术编码 6.3 预测编码 6.3.1 预测编码的基本原理 6.3.2 差值脉冲编码调制 6.3.3 最优线性预测 6.4 变换编码 6.4.1 变换编码系统结构 6.4.2 正交变换编码 6.4.3 小波变换编码简介 6.5 无失真压缩编码 6.5.1 引言 6.5.2 基于线性预测的无失真压缩 6.5.3 基于S+P变换的无失真压缩 6.5.4 基于第二代小波变换的无失真压缩 6.6 国际标准简介 6.6.1 JPEG 6.6.2 H.261建议 6.6.3 MPEG-1标准 6.6.4 MPEG-2标准 6.6.5 MPEG-4标准 6.6.6 MPEG-7标准 6.6.7 MPEG-21标准 本章参考文献 第7章 图像边缘检测 7.1 边缘检测的基本概念 7.2 微分边缘检测算子 7.2.1 梯度方法 7.2.2 二阶微分算子 7.3 多尺度边缘检测 7.3.1 Marr-Hildretch边缘检测 7.3.2 Witkin尺度滤波理论 7.3.3 小波变换边缘检测 7.4 基于模糊增强的边缘检测 7.4.1 引言 7.4.2 单层次模糊增强简介 7.4.3 多层次模糊增强 7.4.4 基于多层次模糊增强的边缘提取 7.5 基于Snake模型的边缘检测 7.5.1 Snake模型的数学描述 7.5.2 基于Snake模型的边缘检测 7.6 曲面拟合边缘检测 本章参考文献 第8章 图像分割 8.1 图像分割的一般模型 8.2 基于阈值选取的图像分割方法 8.2.1 直方图阈值 8.2.2 最大熵阈值 8.2.3 二维直方图阈值 8.2.4 统计判决确定门限 8.2.5 局部阈值法 8.3 基于区域的图像分割方法 8.3.1 区域生长法 8.3.2 分裂-合并 8.4 基于边缘检测的图像分割 8.4.1 Hough变换原理 8.4.2 Hough变换应用 8.4.3 广义Hough变换 8.5 模糊分割技术 8.5.1 模糊阈值分割方法 8.5.2 基于二维直方图的模糊门限分割方法 本章参考文献 第9章 图像特征分析 9.1 颜色特征分析 9.1.1 颜色的表示 9.1.2 颜色直方图 9.1.3 直方图不变特征量 9.1.4 颜色矩 9.2 纹理特征分析 9.2.1 空间自相关法 9.2.2 傅里叶功率谱法 9.2.3 共生矩阵法 9.2.4 基于邻域特征统计的纹理分析方法 9.2.5 灰度差分统计方法与行程长度统计法 9.2.6 用分数维描述纹理 9.2.7 Tamura纹理特征 9.3 形状特征分析 9.3.1 引言 9.3.2 基于轮廓的全局方法 9.3.3 基于轮廓的结构方法 9.3.4 基于区域的全局方法 9.3.5 基于区域的结构方法 本章参考文献 第10章 图像配准 10.1 图像配准基础 10.1.1 图像配准的概念 10.1.2 图像配准的一般模型 10.1.3 相似性测度 10.2 基于图像灰度的图像配准 10.2.1 互相关匹配方法 10.2.2 投影匹配算法 10.2.3 基于傅里叶变换的相位匹配方法 10.2.4 图像矩匹配方法 10.3 基于图像特征的配准 10.3.1 算法步骤与特点 910.3.2 图像预处理 10.3.3 特征选择 10.3.4 图像匹配 10.4 最小二乘图像匹配方法 10.4.1 基本思想 10.4.2 基本算法 10.5 快速匹配方法 10.5.1 分层搜索算法 10.5.2 基于遗传算法的匹配方法 10.5.3 基于金字塔分级搜索的匹配方法 本章参考文献 第11章 图像融合 11.1 图像融合的基本原理 11.1.1 信息融合的概念 11.1.2 多源遥感图像融合 11.1.3 图像融合的模型框架与算法 11.1.4 遥感图像融合效果的评价 11.2 小波变换融合法 11.2.1 传统的小波变换融合方法 11.2.2 基于特征的小波变换融合方法 11.3 基于PCA变换与小波变换的图像融合 11.3.1 PCA(主分量分析)变换融合法 11.3.2 基于PCA变换与小波变换的融合算法 11.4 基于IHS变换与小波变换的图像融合 11.4.1 IHS变换融合法 11.4.2 基于IHS变换与小波变换的融合算法 本章参考文献 第12章 图像分类 12.1 图像分类的概念与原理 12.1.1 图像分类的概念 12.1.2 图像分类的原理 12.2 统计分类方法 12.2.1 监督分类 12.2.2 非监督分类 12.3 模糊分类方法 12.3.1 模糊集合 12.3.2 模糊关系 12.3.3 模糊分类 12.3.4 基于模糊关系的模式分类 12.3.5 模糊聚类方法 12.3.6 改进的模糊C-均值算法 12.4 神经网络分类方法 12.4.1 人工神经网络基础 12.4.2 神经网络监督分类方法 12.4.3 神经网络非监督分类方法 12.5 基于广义图像的神经网络遥感图像分类方法 12.5.1 广义图像 12.5.2 算法的实现过程 12.5.3 实验结果与性能比较 12.6 基于证据理论与神经网络的遥感图像分类方法 12.6.1 证据理论 12.6.2 算法的实现过程 12.6.3 实验结果与性能比较 本章参考文献 第13章 图像识别 13.1 图像识别的基本原理 13.2 模板匹配识别技术 13.2.1 模板匹配一般模型 13.2.2 序贯相似性检测算法 13.3 神经网络图像识别技术 13.3.1 神经网络识别的一般模型 13.3.2 BP神经网络识别技术 13.3.3 Kohonen神经网络识别技术 13.4 模糊识别技术 13.4.1 隶属原则识别法 13.4.2 择近原则识别法 13.4.3 一种手写文字模糊识别技术 13.5 基于隐马尔可夫模型的识别技术 13.5.1 隐马尔可夫模型基础 13.5.2 基于隐马尔可夫模型的人脸识别 13.6 车牌识别技术 13.6.1 系统简介 13.6.2 车牌图像定位分割算法 13.6.3 车牌字符的识别 本章参考文献 第14章 c基于内容的图像检索 14.1 基于内容的图像检索概述 14.1.1 基于内容的检索 14.1.2 基于内容的图像检索 14.1.3 基于内容的图像检索相关技术 14.1.4 基于内容的图像检索系统 14.2 基于颜色特征的图像检索 14.2.1 直方图方法 14.2.2 中心矩法 14.2.3 参考颜色表法 14.2.4 颜色对方法 14.2.5 基于主色调的检索方法 14.2.6 结合空间信息的图像检索方法 14.3 基于纹理特征的图像检索 14.3.1 基于共生矩阵的纹理匹配 14.3.2 基于小波变换的纹理匹配 14.3.3 基于Gabor变换的纹理匹配 14.4 基于形状特征的图像检索 14.4.1 基于傅里叶描述的形状检索 14.4.2 基于形状矩的形状检索 本章参考文献 第15章 图像数字水印技术 15.1 图像数字水印技术概述 15.1.1 信息隐藏技术 15.1.2 数字水印技术 15.2 空域水印技术 15.3 DCT域图像水印技术 15.3.1 DCT域图像水印研究综述 15.3.2 算法实例 5.3.3 水印的稳健性测试 15.4 小波域图像水印技术 15.4.1 技术流程 15.4.2 基于低频子带方法 15.4.3 细节分量方法 15.4.4 利用图像编码的方法 15.4.5 Inoue算法 15.5 脆弱图像数字水印技术 15.5.1 脆弱图像数字水印的基本特征和研究状况 15.5.2 算法实例 本章参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值