【ybt高效进阶1-1-5】平铺方案

平铺方案

题目链接:ybt高效进阶1-1-5

题目大意

1 × 2 1\times2 1×2 2 × 2 2\times2 2×2 的方块铺满 2 × n 2\times n 2×n 的矩阵,问你有多少种方案。

思路

那我们可以想,要通过怎样的排列方式,才会形成 2 × x 2\times x 2×x 的矩阵。
(这个矩阵要是最小最基础的,然后把很多个这些矩阵拼在一起,就可以得到 2 × n 2\times n 2×n 的矩阵)

可以想到这样几种:

  1. 直接摆一个 2 × 2 2\times 2 2×2 的。
  2. 1 × 2 1\times 2 1×2 的,横着摆两个
  3. 1 × 2 1\times 2 1×2 的,竖着摆一个。

那第一第二种就是可以使宽度 + 2 +2 +2,而第三种可以使宽度 + 1 +1 +1
或者说,要得到 f n f_n fn,有两种方案是变成求 f n − 2 f_{n-2} fn2 的,而有一种方案是求 f n − 1 f_{n-1} fn1 的。

你会发现这就是 dp, f i = f i − 1 + 2 × f i − 2 f_{i}=f_{i-1}+2\times f_{i-2} fi=fi1+2×fi2

不过从样例都可以看出要用高精。
为了减少代码量,可以把 2 × f i − 2 2\times f_{i-2} 2×fi2 变成 f i − 2 + f i − 2 f_{i-2}+f_{i-2} fi2+fi2,就只用弄高精加的了。

代码

#include<cstdio>
#include<iostream>
#define mo 100000

using namespace std;

struct gj {
	int n, a[51];
}f[260], re;
int n, tmp;

gj operator +(gj x, gj y) {//高精加
	re.n = max(x.n, y.n);
	
	re.a[0] = 0;
	for (int i = 0; i < re.n; i++) {
		re.a[i] += x.a[i] + y.a[i];
		re.a[i + 1] = re.a[i] / mo;
		re.a[i] %= mo;
	}
	
	if (re.a[re.n] != 0) re.n++;
	
	return re;
}

int main() {
	f[1].n = 1;
	f[1].a[0] = 1;
	f[2].n = 1;
	f[2].a[0] = 3;
	for (int i = 3; i <= 250; i++) {
		f[i] = f[i - 1] + f[i - 2] + f[i - 2];
	}
	
	while (scanf("%d", &n) != EOF) {
		printf("%d", f[n].a[f[n].n - 1]);
		for (int i = f[n].n - 2; i >= 0; i--) {
			tmp = mo / 10;
			while (!(f[n].a[i] / tmp)) {
				printf("0");
				tmp /= 10;
			}
			printf("%d", f[n].a[i]);
		}
		printf("\n");
	}
	
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值