【ybt金牌导航1-1-7】【luogu P6089】选书问题 / 非诚勿扰

选书问题 / 非诚勿扰

题目链接:ybt金牌导航1-1-7 / luogu P6089

题目大意

就是有两种点,第一种的点会与一些第二种点连接,然后对于每一个连着的第二种点,这个第一种的点会有 p 的概率选择这个点,否则就跳到下一个和它连着的点。然后如果一直到最后一个都不选,就跳到第一个继续。
问你期望逆序对的概率。

思路

我们看第一种点连着 k k k 个第二种点。

然后我们来看选中第 i i i 个第二种点的概率。
由于有无限,而且很麻烦,我们只看第一个点。

它第一轮被选中的概率是 p p p,第二轮是 ( 1 − p ) k p (1-p)^kp (1p)kp,第三轮是 ( 1 − p ) 2 k p (1-p)^{2k}p (1p)2kp,以此类推。
我们可以发现总概率就是 ∑ i = 0 ∞ ( 1 − p ) i k p \sum\limits_{i=0}^{\infty }(1-p)^{ik}p i=0(1p)ikp
那我们看怎么化简,可以发现是一个等比数列的和。

那我们根据和等于 a 1 ( 1 − q n ) 1 − q \dfrac{a_1(1-q^n)}{1-q} 1qa1(1qn),可以把式子变成这个:
p ( 1 − ( 1 − p ) k × ∞ ) 1 − ( 1 − p ) k \dfrac{p(1-(1-p)^{k\times\infty})}{1-(1-p)^k} 1(1p)kp(1(1p)k×),即 p ( 1 − ( 1 − p ) ∞ ) 1 − ( 1 − p ) k \dfrac{p(1-(1-p)^{\infty})}{1-(1-p)^k} 1(1p)kp(1(1p))

因为 1 − p 1-p 1p 是一个大于零小于一的数,所以它的无限次方就无限趋近与零,那一减它就是无限趋近于一咯。
那这个式子就变成了这个: p 1 − ( 1 − p ) k \dfrac{p}{1-(1-p)^k} 1(1p)kp

那我们就得出了第一个点被选中的概率,那怎么求第二个、第三个这些点的概率呢?
很明显,可以知道这些点被选中的概率就是上一个点被选中的概率 × ( 1 − p ) \times (1-p) ×(1p)。(就是上一个不选,然后这个选,就要不多一次不选,就是多乘一次 × ( 1 − p ) \times (1-p) ×(1p)

i i i 个被选到的概率就是 p × ( 1 − p ) i − 1 1 − ( 1 − p ) k \dfrac{p\times(1-p)^{i-1}}{1-(1-p)^k} 1(1p)kp×(1p)i1

求次方很明显用快速幂,那我们就可以求出概率了。

接下来,我们来看期望怎么求。

看到题目要求逆序对,我们会很自然地想到求逆序对的树状数组。
但是它要的是期望诶。
那普通求逆序对个数是每次加一,那我们就加出现这个点的概率。而且找前面的逆序对的时候还要乘上这个点被选到的概率。
这样子,我们就可以得出这两个点都被选到的概率相乘,也就是这一个逆序对的期望了。

然后有一点要注意的就是题目会卡精度,用 long double 来解决。

代码

#include<cstdio>
#include<vector>
#include<algorithm>

using namespace std;

int n, m, x, y, size;
vector <int> a[500001];
long double p, re, ans, tree[500001], thi;

void build(int x, long double y) {//树状数组
	for (int now = x; now <= 500000; now += now & (-now))
		tree[now] += y; 
}

long double ask(int x) {
	re = 0;
	for (int now = x; now; now -= now & (-now))
		re = re + tree[now];
	return re;
}

long double ksm(long double x, int y) {//快速幂
	re = 1.0;
	while (y) {
		if (y & 1) re = re * x;
		x = x * x;
		y >>= 1;
	}
	return re;
}

int main() {
	scanf("%d %d", &n, &m);
	scanf("%Lf", &p);
	
	for (int i = 1; i <= m; i++) {
		scanf("%d %d", &x, &y);
		a[x].push_back(y);
	}
	
	for (int i = 1; i <= n; i++)
		sort(a[i].begin(), a[i].end());
	
	ans = 0.0;
	for (int i = 1; i <= n; i++) {
		size = a[i].size();
		for (int j = 0; j < size; j++) {
			thi = p * ksm(1.0 - p, j) / (1.0 - ksm(1.0 - p, size));//算出来的概率
			ans += (ask(m) - ask(a[i][j])) * thi;
			build(a[i][j], thi);
		}
	}
	
	printf("%.2Lf", ans);
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值