【nowcoder 214271】小D和他的魔法石

背包 同时被 3 个专栏收录
21 篇文章 0 订阅
13 篇文章 0 订阅
89 篇文章 0 订阅

小D和他的魔法石

题目链接:nowcoder 214271

到牛客看:

——>点我跳转<——

题目大意

有一些魔法石,每种有无限个,用一个耗费一个值的体力,获得一个值的能力。

然后你可以有 k 次机会把两种魔法石的体力值互换,一定要把 k 次都用完。

然后问你在耗费体力不大于 m 的时候,最多能有多少能力值。

思路

这道题主要是考虑分类讨论。

首先,很明显的就是如果 k = 0 k=0 k=0,我们就直接做完全背包。

那考虑有换的机会,我们可以想到贪心。让一个魔法石耗费体力值最小,获得能力值最大。

那考虑怎么才能换出这个局面,怎么才换不出。
我们可以发现,k 就算是 1 1 1,也可以换出。

但如果 n n n 2 2 2 时呢?
因为交换次数一定要用完,那我们就要判断换完之后是否是最优的。
是最优的就按这个输出,否则就又是背包。

那对于 n n n 不是 2 2 2 的情况,那一定可以构造最优的石头。

代码

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long

using namespace std;

int n, m, k, a[1001], b[1001], times;

int main() {
	scanf("%d %d %d", &n, &m, &k);
	
	if (k == 0) {//不能变换,那就是一道普通的背包
		for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
		for (int i = 1; i <= n; i++) scanf("%d", &b[i]);
		
		ll f[2][1001], ans = 0;
		memset(f, 0, sizeof(f));
		for (int i = 1; i <= n; i++)
			for (int j = m; j >= 0; j--) {
				f[i & 1][j] = f[(i - 1) & 1][j];
				times = 1;
				while (j - a[i] * times >= 0) {
					f[i & 1][j] = max(f[i & 1][j], f[(i - 1) & 1][j - a[i] * times] + b[i] * times);
					times++;
				}
			}
		
		for (int i = 0; i <= m; i++)
			ans = max(ans, f[n & 1][i]);
		
		printf("%lld", ans);
		
		return 0;
	}
	
	if (n == 2) {//只有两种魔法石
		int maxn = 0, minn = 2147483647;
		for (int i = 1; i <= n; i++) {
			scanf("%d", &a[i]);
			minn = min(minn, a[i]);
		}
		for (int i = 1; i <= n; i++) {
			scanf("%d", &b[i]);
			maxn = max(maxn, b[i]);
		}
		if ((a[1] == minn && b[1] != maxn) || (a[1] != minn && b[1] == maxn)) {//原本不是最优
			if (k & 1) {//能在用完交换次数后达到我们要的最优状态
				printf("%lld", 1ll * maxn * (1ll * (m / minn)));
				
				return 0;
			}
			else {//不能,那就是背包
				ll f[2][1001], ans = 0;
				memset(f, 0, sizeof(f));
				for (int i = 1; i <= n; i++)
					for (int j = m; j >= 0; j--) {
						f[i & 1][j] = f[(i - 1) & 1][j];
						times = 1;
						while (j - a[i] * times >= 0) {
							f[i & 1][j] = max(f[i & 1][j], f[(i - 1) & 1][j - a[i] * times] + b[i] * times);
							times++;
						}
					}
				
				for (int i = 0; i <= m; i++)
					ans = max(ans, f[n & 1][i]);
				
				printf("%lld", ans);
				
				return 0;
			}
		}
		else {//原本是最优
			if (k & 1) {//不能
				swap(a[1], a[2]);
				ll f[2][1001], ans = 0;
				memset(f, 0, sizeof(f));
				for (int i = 1; i <= n; i++)
					for (int j = m; j >= 0; j--) {
						f[i & 1][j] = f[(i - 1) & 1][j];
						times = 1;
						while (j - a[i] * times >= 0) {
							f[i & 1][j] = max(f[i & 1][j], f[(i - 1) & 1][j - a[i] * times] + b[i] * times);
							times++;
						}
					}
				
				for (int i = 0; i <= m; i++)
					ans = max(ans, f[n & 1][i]);
				
				printf("%lld", ans);
				
				return 0;
			}
			else {//能
				printf("%lld", 1ll * maxn * (1ll * (m / minn)));
				
				return 0;
			}
		}
		
		return 0;
	}
	
	int maxn = 0, minn = 2147483647;
	for (int i = 1; i <= n; i++) {
		scanf("%d", &a[i]);
		minn = min(minn, a[i]);
	}
	for (int i = 1; i <= n; i++) {
		scanf("%d", &b[i]);
		maxn = max(maxn, b[i]);
	}
	
	printf("%lld", 1ll * maxn * (1ll * (m / minn)));
	
	return 0;
}
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 鲸 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值