【nowcoder 213804】一道GCD问题

一道GCD问题

题目链接:nowcoder 213804

到牛客看:

——>点我跳转<——

题目大意

有一堆数,你要把他们都加一个尽可能小的数 k,让它们的 gcd 尽可能大。
要你输出这个 k 和最后最大的 gcd。

思路

这道题让所有数都加一个数,那他们任意两个数的差都是一样的。

那我们再看看 gcd,如果一堆数的 gcd 是 x,那任意两个数的差的绝对值一定是 x 的倍数。

那我们不如求出这些数排序后,每两个数之间的差组合成一个新的序列,这个序列的 gcd 就是它们可以有的最大的 gcd。

那 k 应该最小要多少呢?
那就是要让每个都变成我们求出 gcd 值的倍数。
那其实我们只要让最小的加到它的倍数就可以了。
(那当然如果 gcd 是 1 1 1 的话就不用加了)

代码

#include<cstdio>
#include<algorithm>

using namespace std;

int n, a[100010], re, zf, gcdd;
char c;

int read() {
	zf = 1;
	re = 0;
	c = getchar();
	while (c < '0' || c > '9') {
		if (c == '-') zf = -zf;
		c = getchar();
	}
	while (c >= '0' && c <= '9') {
		re = re * 10 + c - '0';
		c = getchar();
	}
	return re * zf;
}

bool cmp(int x, int y) {
	return x < y;
}

int gcd(int x, int y) {
	if (!y) return x;
	return gcd(y, x % y);
}

int main() {
	n = read();
	for (int i = 1; i <= n; i++) {
		a[i] = read();
	}
	
	sort(a + 1, a + n + 1, cmp);
	
	gcdd = a[2] - a[1];
	for (int i = 3; i <= n; i++) {
		gcdd = gcd(gcdd, a[i] - a[i - 1]);
	}
	
	if (gcdd == 1) printf("1 0");
		else printf("%d %d", gcdd, gcdd - (a[1] % gcdd));
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值