等深度查询 / Tree Requests
题目链接:ybt金牌导航6-2-5 / luogu CF570D
题目大意
给你一棵以 1 为根的树,每个点有一个字母。
多次询问,询问 x 子树中在原树深度为 y 的点的字母能否通过重新排列形成一个回文串。
思路
首先考虑回文串,由于是重新排列,不难得出就是要出现次数是奇数次的字母不超过一个。
由于字母只有
26
26
26 个,不难想到用二进制与异或来搞。
那我们考虑先暴力求解。
考虑对于每个子树,我们处理它的询问。
那我们设
n
u
m
i
num_i
numi 为在当前的子树中,原树深度为
i
i
i 的点的数的异或和。
搞好之后,你就把它的询问给处理了,就是查看那个深度的
n
u
m
i
num_i
numi 是否不超过
1
1
1 为是
1
1
1。
可以用 lowbit 快速搞,num[i] == (num[i] & -num[i])
那我们每搞完一棵树,就要把它清空。
那不难想到你其实可以把最后一个子树的值留下来。
不难想到树上启发式合并。
那复杂度就降到
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn),就可以了。
不过后面看了看题解区发现有好多别的做法。
比如可以 dfs 作差,走到哪里异或哪里,进节点的时候记录这个时候的二进制,然后出来的时候异或上原来的,就是答案。
还可以在线做,用异或前缀和。把每个深度的节点按 dfs 序放入 vector 中。而且对于每个 vector 搞一个异或前缀和。
然后你询问就在对于的 vector 里面找 dfs 序比
L
x
L_x
Lx 到
R
x
R_x
Rx 之间的点就可以了。
(但是这两个都懒得写了)
代码
#include<cstdio>
#include<vector>
using namespace std;
struct node {
int to, nxt;
}e[500001];
int n, m, fa[500001], x, y;
int le[500001], KK, val[500001];
int deg[500001], num[500001];
int sz[500001], son[500001];
int dfn[500001], out[500001];
int tot, dy[500001];
vector <int> q[500001], pl[500001];
bool ans[500001];
char c;
void add(int x, int y) {
e[++KK] = (node){y, le[x]}; le[x] = KK;
}
void dfs(int now) {//dfs 预处理
sz[now] = 1;
dfn[now] = ++tot;
dy[tot] = now;
for (int i = le[now]; i; i = e[i].nxt) {
deg[e[i].to] = deg[now] + 1;
dfs(e[i].to);
sz[now] += sz[e[i].to];
if (sz[e[i].to] > sz[son[now]]) son[now] = e[i].to;
}
out[now] = tot;
}
void add_one(int now, int zf) {
num[deg[now]] ^= val[now];
}
//用递归洛谷可以过,但是一本通会 TLE 到 10 分
//应该是递归的常数比较大
void add_tree(int now, int zf) {
for (int i = dfn[now]; i <= out[now]; i++)
add_one(dy[i], zf);
}
void dfs1(int now) {//树上启发式合并
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != son[now]) {
dfs1(e[i].to);
add_tree(e[i].to, -1);
}
if (son[now]) dfs1(son[now]);
add_one(now, 1);
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].to != son[now]) {
add_tree(e[i].to, 1);
}
for (int i = 0; i < q[now].size(); i++) {
int id = pl[now][i], r = q[now][i];
ans[id] = (num[r] == (num[r] & -num[r]));//可以用 lowbit O(1) 求是否可以回文
}
}
int main() {
scanf("%d %d", &n, &m);
for (int i = 2; i <= n; i++)
scanf("%d", &fa[i]), add(fa[i], i);
deg[1] = 1;
dfs(1);
for (int i = 1; i <= n; i++) {
c = getchar();
while (c < 'a' || c > 'z') c = getchar();
val[i] = (1 << (c - 'a'));
}
for (int i = 1; i <= m; i++) {
scanf("%d %d", &x, &y);
q[x].push_back(y);
pl[x].push_back(i);
}
dfs1(1);
for (int i = 1; i <= m; i++)
if (ans[i]) printf("Yes\n");
else printf("No\n");
return 0;
}