【ybt金牌导航6-2-5】【luogu CF570D】等深度查询 / Tree Requests(树上启发式合并)

等深度查询 / Tree Requests

题目链接:ybt金牌导航6-2-5 / luogu CF570D

题目大意

给你一棵以 1 为根的树,每个点有一个字母。
多次询问,询问 x 子树中在原树深度为 y 的点的字母能否通过重新排列形成一个回文串。

思路

首先考虑回文串,由于是重新排列,不难得出就是要出现次数是奇数次的字母不超过一个。
由于字母只有 26 26 26 个,不难想到用二进制与异或来搞。

那我们考虑先暴力求解。
考虑对于每个子树,我们处理它的询问。
那我们设 n u m i num_i numi 为在当前的子树中,原树深度为 i i i 的点的数的异或和。
搞好之后,你就把它的询问给处理了,就是查看那个深度的 n u m i num_i numi 是否不超过 1 1 1 为是 1 1 1
可以用 lowbit 快速搞,num[i] == (num[i] & -num[i])
那我们每搞完一棵树,就要把它清空。

那不难想到你其实可以把最后一个子树的值留下来。
不难想到树上启发式合并。
那复杂度就降到 O ( n l o g n ) O(nlogn) O(nlogn),就可以了。

不过后面看了看题解区发现有好多别的做法。
比如可以 dfs 作差,走到哪里异或哪里,进节点的时候记录这个时候的二进制,然后出来的时候异或上原来的,就是答案。
还可以在线做,用异或前缀和。把每个深度的节点按 dfs 序放入 vector 中。而且对于每个 vector 搞一个异或前缀和。
然后你询问就在对于的 vector 里面找 dfs 序比 L x L_x Lx R x R_x Rx 之间的点就可以了。
(但是这两个都懒得写了)

代码

#include<cstdio>
#include<vector>

using namespace std;

struct node {
	int to, nxt;
}e[500001];
int n, m, fa[500001], x, y;
int le[500001], KK, val[500001];
int deg[500001], num[500001];
int sz[500001], son[500001];
int dfn[500001], out[500001];
int tot, dy[500001];
vector <int> q[500001], pl[500001];
bool ans[500001];
char c;

void add(int x, int y) {
	e[++KK] = (node){y, le[x]}; le[x] = KK;
}

void dfs(int now) {//dfs 预处理
	sz[now] = 1;
	dfn[now] = ++tot;
	dy[tot] = now;
	for (int i = le[now]; i; i = e[i].nxt) {
		deg[e[i].to] = deg[now] + 1;
		dfs(e[i].to);
		sz[now] += sz[e[i].to];
		if (sz[e[i].to] > sz[son[now]]) son[now] = e[i].to;
	}
	out[now] = tot;
}

void add_one(int now, int zf) {
	num[deg[now]] ^= val[now];
}

//用递归洛谷可以过,但是一本通会 TLE 到 10 分
//应该是递归的常数比较大
void add_tree(int now, int zf) {
	for (int i = dfn[now]; i <= out[now]; i++)
		add_one(dy[i], zf);
}

void dfs1(int now) {//树上启发式合并
	for (int i = le[now]; i; i = e[i].nxt)
		if (e[i].to != son[now]) {
			dfs1(e[i].to);
			add_tree(e[i].to, -1);
		}
	if (son[now]) dfs1(son[now]);
	
	add_one(now, 1);
	for (int i = le[now]; i; i = e[i].nxt)
		if (e[i].to != son[now]) {
			add_tree(e[i].to, 1);
		}
	
	for (int i = 0; i < q[now].size(); i++) {
		int id = pl[now][i], r = q[now][i];
		ans[id] = (num[r] == (num[r] & -num[r]));//可以用 lowbit O(1) 求是否可以回文
	}
}

int main() {
	scanf("%d %d", &n, &m);
	for (int i = 2; i <= n; i++)
		scanf("%d", &fa[i]), add(fa[i], i);
	
	deg[1] = 1;
	dfs(1);
	
	for (int i = 1; i <= n; i++) {
		c = getchar();
		while (c < 'a' || c > 'z') c = getchar();
		val[i] = (1 << (c - 'a'));
	}
	
	for (int i = 1; i <= m; i++) {
		scanf("%d %d", &x, &y);
		q[x].push_back(y);
		pl[x].push_back(i);
	}
	
	dfs1(1);
	
	for (int i = 1; i <= m; i++)
		if (ans[i]) printf("Yes\n");
			else printf("No\n");
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值