【ybt高效进阶6-1-1】序列的第k个数(快速幂)

该博客介绍了如何解决一个编程题目,即根据等差或等比序列的前三项求第k个数。通过直接乘法或快速幂运算实现,代码中使用了C++并涉及数学算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序列的第k个数

题目链接:ybt高效进阶6-1-1

题目大意

给你一个等差序列或等比序列的前三项,要你求第 k 项。

思路

等差就直接乘一下,等比就直接快速幂。

代码

#include<cstdio>
#define ll long long
#define mo 200907

using namespace std;

int T;
ll a, b, c, k;

ll ksm(ll x, ll y) {
	ll re = 1;
	while (y) {
		if (y & 1) re = (re * x) % mo;
		x = (x * x) % mo;
		y >>= 1;
	}
	return re;
}

int main() {
	scanf("%d", &T);
	while (T--) {
		scanf("%lld %lld %lld %lld", &a, &b, &c, &k);
		if (b - a == c - b) {
			printf("%lld\n", (a + (b - a) * (k - 1) % mo) % mo);
		}
		else {
			printf("%lld\n", (a * ksm(b / a, k - 1)) % mo);
		}
	}
	
	return 0;
}
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值