【luogu P7418】Counting Graphs P(DP)(思维)(容斥)

Counting Graphs P

题目链接:luogu P7418

题目大意

给你一个图,然后 fi,j 表示是否存在一个从 1 到 i 的路径经过的边数是 j。
然后问你能构造出来多少个图使得它的 f 函数跟给出的图的一样。
会有自环,没有重边。

思路

首先参考 Minimizing Edges P 的思路,搞出奇偶最短路。

首先还是一样,特判二分图。
那如果二分图,每一层的点数分别是 a 1 , a 2 , . . . a_1,a_2,... a1,a2,...
那我们考虑对于每两层之间算连边的方案数,然后乘起来。
那对于第 i i i 层和第 i + 1 i+1 i+1 层,然后其实要 i + 1 i+1 i+1 每个都连到,那其实对于每个点可以枚举令一行与它的连边状态,那就是 ( 2 a i − 1 ) a i + 1 (2^{a_i}-1)^{a_{i+1}} (2ai1)ai+1

然后我们考虑继续用上一题的思路, x + y x+y x+y y y y 坐标, x x x x x x 坐标。
然后考虑在这个上面 DP。
那往上一层的时候还好,但一层内转移是两边都要的,所以我们要多设一维,表示 f x , y , p f_{x,y,p} fx,y,p 为当前到 ( x , y ) (x,y) (x,y) 这个状态, p p p 个点需要下一个状态连过去(这个转移要是内部的转移)。( s 1 s1 s1 ( x , y ) (x,y) (x,y) 这个状态的个数, s 2 s2 s2 ( x − 1 , y − 1 ) (x-1,y-1) (x1,y1) 这个状态的个数)

f x , y , p = ∑ q = 0 s 1 − p g x , y , q C s 1 − p q ( 2 s 2 − 1 ) s 1 − p f_{x,y,p}=\sum\limits_{q=0}^{s1-p}g_{x,y,q}C_{s1-p}^q(2^{s2}-1)^{s1-p} fx,y,p=q=0s1pgx,y,qCs1pq(2s21)s1p

解释:
我们枚举的 q q q 是在这里两层传递 q q q 个。
C s 1 − p q C_{s1-p}^q Cs1pq:在剩下不内部转移的点中选 q q q 个进行一层的转移。
( 2 s 2 − 1 ) s 1 − p (2^{s2}-1)^{s1-p} (2s21)s1p:两层之间转移的方案数,跟二分图的计算是一样的。
g x , y , q g_{x,y,q} gx,y,q:表示 s 1 − q s1-q s1q 个点都是由 ( x − 1 , y + 1 ) (x-1,y+1) (x1,y+1) 转移过来的方案数。

然后接着你考虑如何转移 g x , y , p g_{x,y,p} gx,y,p
考虑枚举上一个状态有多少个点需要现在这个状态把边连过去,然后枚举为 q q q 个,然后:( s 1 s1 s1 ( x , y ) (x,y) (x,y) 这个状态的个数, s 3 s3 s3 ( x + 1 , y − 1 ) (x+1,y-1) (x+1,y1) 这个状态的个数)

g x , y , p = C s 1 p ∑ q = 0 s 3 f x + 1 , y − 1 , q h s 3 , q , s 1 − p g_{x,y,p}=C_{s1}^p\sum\limits_{q=0}^{s3}f_{x+1,y-1,q}h_{s3,q,s1-p} gx,y,p=Cs1pq=0s3fx+1,y1,qhs3,q,s1p

解释:
C s 1 p C_{s1}^p Cs1p:先要选 p p p 个。
f x + 1 , y − 1 , q f_{x+1,y-1,q} fx+1,y1,q:上一个状态的方案数。
h s 3 , q , s 1 − p h_{s3,q,s1-p} hs3,q,s1p:表示大小为 s 3 s3 s3 的集合跟大小为 s 1 − p s1-p s1p 的集合之间连边,保证 s 2 s2 s2 中的 q q q 个点和大小为 s 1 − p s1-p s1p 的集合的度数至少是 1 1 1,它的方案数。

不难看出又要求 h i , j , k h_{i,j,k} hi,j,k,考虑用容斥,枚举 p p p j j j 中的点没有出度。

h i , j , k = ∑ p = 0 j ( − 1 ) p C j p ( 2 i − p − 1 ) k h_{i,j,k}=\sum\limits_{p=0}^j(-1)^pC_j^p(2^{i-p}-1)^k hi,j,k=p=0j(1)pCjp(2ip1)k

解释:
( − 1 ) p (-1)^p (1)p:容斥
C j p C_j^p Cjp:在要的 j j j 个点中选 p p p 个不要。
( 2 i − p − 1 ) k (2^{i-p}-1)^k (2ip1)k:匹配的方案数,跟二分图的搞法是一样的。

然后考虑如何统计答案,不难看出就是每一行的最后一个( x + 1 = y x+1=y x+1=y 或者就是最后一个状态)
那明显的看到这两个肯定统计方法是不一样的(一个可以内部消化,一个不行)
那如果不能内部消化,那就不能往右边连,所以贡献就是 f x , y , 0 f_{x,y,0} fx,y,0

那如果是 x + 1 = y x+1=y x+1=y 呢?
那我们就可以同类消化,使得任意个点要往右连都是可以的。
( x , y ) (x,y) (x,y),即 ( x , x + 1 ) (x,x+1) (x,x+1) 的状态个数是 s s s

那贡献就是 ∑ i = 0 s T s , i f x , y , i \sum\limits_{i=0}^sT_{s,i}f_{x,y,i} i=0sTs,ifx,y,i

解释:
f x , y , i f_{x,y,i} fx,y,i:就是原来状态的方案数。
T s , i T_{s,i} Ts,i:大小为 s s s 的集合中 i i i 个点通过同类连边消化掉的方案数。

然后考虑求 T i , j T_{i,j} Ti,j,也是容斥,设 k k k 个点的度数是 0 0 0

T i , j = ∑ k = 0 j ( − 1 ) k C j k 2 ( i − k ) ( i − k + 1 ) 2 T_{i,j}=\sum\limits_{k=0}^j(-1)^kC_j^k2^{\frac{(i-k)(i-k+1)}{2}} Ti,j=k=0j(1)kCjk22(ik)(ik+1)

解释:
( − 1 ) k (-1)^k (1)k:容斥
C j k C_j^k Cjk:选 k k k 个度数为 0 0 0
2 ( i − k ) ( i − k + 1 ) 2 2^{\frac{(i-k)(i-k+1)}{2}} 22(ik)(ik+1):除去 k k k 个点剩下点任意连边的方案数。
就是对于每一条可能的边都有选或者不选,点数是 i − k = x i-k=x ik=x,可能的边就是 x ( x − 1 ) 2 \dfrac{x(x-1)}{2} 2x(x1) ( i − k ) ( i − k − 1 ) 2 \dfrac{(i-k)(i-k-1)}{2} 2(ik)(ik1),然后每条边都可以选或不选就是 2 2 2 的那么多次方了。

然后自此,你就可以搞出来了!!!

至于 T , h T,h T,h 你可以直接预处理,也可以开个记忆化,要用再算,然后 f , g f,g f,g 就是每次询问都会变,记得初始化。
然后你可以预处理出来阶乘(以及它的逆元),组合数, 2 x 2^x 2x x ⩽ n 2 x\leqslant n^2 xn2),以及 ( 2 x − 1 ) y (2^{x}-1)^y (2x1)y x , y ⩽ n x,y\leqslant n x,yn

然后就可以搞啦!

代码

#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define mo 1000000007
#define INF 0x3f3f3f3f3f3f3f3f

using namespace std;

const int N = 205;
const int M = 80005;
struct node {
	int to, nxt;
}e[M];
int T, n, m, x, y, le[N], KK;
int cunt[N];
ll ans, f[N][N][N >> 1], g[N][N][N >> 1], t[N][N], h[N][N][N];
ll jc[N], cff[N][N], inv[N], cf[M], s1, s2, s3, re;
bool gogo;

struct st {
	int x, y;
}tp[N];
int nm[N][N];
int tpn, tpx, tpy;

struct ztzt {
	int dis, now;
};
bool operator <(ztzt x, ztzt y) {
	return x.dis > y.dis;
}
priority_queue <ztzt> q;
int dis[N << 1];
bool in[N << 1];

void add(int x, int y) {
	e[++KK] = (node){y, le[x]}; le[x] = KK;
	e[++KK] = (node){x, le[y]}; le[y] = KK;
}

void dij() {//跑出奇偶最短路
	for (int i = 0; i <= 2 * n; i++)
		in[i] = 0, dis[i] = INF;
	dis[1] = 0; q.push((ztzt){0, 1});
	while (!q.empty()) {
		int now = q.top().now;
		q.pop();
		if (in[now]) continue;
		in[now] = 1;
		for (int i = le[now]; i; i = e[i].nxt)
			if (!in[e[i].to] && dis[e[i].to] > dis[now] + 1) {
				dis[e[i].to] = dis[now] + 1;
				q.push((ztzt){dis[e[i].to], e[i].to});
			}
	}
}

bool cmp1(st x, st y) {
	if (x.x + x.y != y.x + y.y) return x.x + x.y < y.x + y.y;
	return x.x < y.x;
}

ll ksm(ll x, ll y) {
	ll re = 1;
	while (y) {
		if (y & 1) re = (re * x) % mo;
		x = (x * x) % mo;
		y >>= 1;
	}
	return re;
}

ll C(int n, int m) {
	if (n < m) return 0ll;
	return jc[n] * inv[m] % mo * inv[n - m] % mo; 
}

ll H(int i, int j, int k) {
	if (h[i][j][k] != -1) return h[i][j][k];
	h[i][j][k] = 0;
	for (int p = 0; p <= j; p++) {
		h[i][j][k] = (h[i][j][k] + ((p & 1) ? -1 : 1) * C(j, p) * cff[i - p][k] % mo) % mo;
		if (h[i][j][k] < 0) h[i][j][k] += mo;
	}
	return h[i][j][k];
}

int main() {	
	jc[0] = 1;//预处理
	for (int i = 1; i < N; i++)
		jc[i] = (jc[i - 1] * i) % mo;
	inv[N - 1] = ksm(jc[N - 1], mo - 2);
	for (int i = N - 2; i >= 0; i--)
		inv[i] = (inv[i + 1] * (i + 1)) % mo;
	cf[0] = 1;
	for (int i = 1; i < M; i++) cf[i] = (cf[i - 1] << 1) % mo;
	for (int i = 0; i < N; i++) {
		cff[i][0] = 1;
		for (int j = 1; j < N; j++)
			cff[i][j] = (cff[i][j - 1] * (cf[i] - 1)) % mo;
	}
	
	memset(h, -1, sizeof(h));
	
	for (int i = 0; i < N; i++)
		for (int j = 0; j <= i; j++) {
			for (int k = 0; k <= j; k++) {
				t[i][j] = (t[i][j] + ((k & 1) ? -1 : 1) * C(j, k) * cf[(i - k) * (i - k + 1) / 2] % mo) % mo;
				if (t[i][j] < 0) t[i][j] += mo;
			}
		}
	
	scanf("%d", &T);
	while (T--) {
		scanf("%d %d", &n, &m);
		
		for (int i = 0; i <= 2 * n; i++)//清空数组
			for (int j = 0; j <= 2 * n; j++)
				for (int k = 0; k <= n; k++)
					f[i][j][k] = g[i][j][k] = 0;
		KK = 0;
		for (int i = 0; i <= 2 * n; i++) le[i] = 0;
		
		for (int i = 1; i <= m; i++) {
			scanf("%d %d", &x, &y);
			add(x, y + n); add(x + n, y);
		}
		
		dij();
		
		gogo = 0;
		for (int i = 1; i <= n; i++) {
			if (dis[i] == dis[0] || dis[i + n] == dis[0]) {
				gogo = 1;
				break;
			}
		}
		ans = 1; tpn = 0;
		if (gogo) {//特判二分图
			for (int i = 0; i <= n * 2; i++) cunt[i] = 0;
			for (int i = 1; i <= n; i++) {
				if (dis[i] != dis[0]) cunt[dis[i]]++;
					else if (dis[i + n] != dis[0]) cunt[dis[i + n]]++;
			}
			for (int i = 1; i <= n * 2; i++) {
				ans = (ans * cff[cunt[i - 1]][cunt[i]]) % mo;
			}
			printf("%lld\n", ans);
		}
		else {
			for (int i = 1; i <= n; i++) {
				tpx = dis[i]; tpy = dis[i + n];
				if (tpx > tpy) swap(tpx, tpy);
				nm[tpx][tpy]++; tp[++tpn] = (st){tpx, tpy};
			}
			sort(tp + 1, tp + tpn + 1, cmp1);
			
			for (int i = 1; i <= tpn; i++) {//DP
				int st = i;
				while (i < tpn && tp[i].x == tp[i + 1].x && tp[i].y == tp[i + 1].y) i++;
				x = tp[i].x; y = tp[i].y;
				
				s1 = nm[x][y];
				if (!x || !y) s2 = 0;
					else s2 = nm[x - 1][y - 1];
				if (!x) s3 = 0;
					else s3 = nm[x - 1][y + 1];
				if (!s3) g[x][y][st == 1 ? 0 : s1] = 1;
				else {
					for (int p = 0; p <= s1; p++) {
						for (int q = 0; q <= s3; q++)
							g[x][y][p] = (g[x][y][p] + f[x - 1][y + 1][q] * H(s3, q, s1 - p) % mo) % mo;
						g[x][y][p] = (g[x][y][p] * C(s1, p)) % mo;
					}
				}
				for (int p = 0; p <= s1; p++) {
					for (int q = 0; q <= s1 - p; q++)
						f[x][y][p] = (f[x][y][p] + C(s1 - q, p) * g[x][y][q] % mo * cff[s2][s1 - p] % mo) % mo;
				}
				
				if (i == tpn || tp[i + 1].x != x + 1 || tp[i + 1].y != y - 1) {//把每一层的贡献算了
					if (x + 1 == y) {
						re = 0;
						for (int p = 0; p <= s1; p++)
							re = (re + f[x][y][p] * t[s1][p] % mo) % mo;
						ans = (ans * re) % mo;
					}
					else {
						ans = (ans * f[x][y][0]) % mo;
					}
				}
			}
			
			printf("%lld\n", ans);
			
			for (int i = 1; i <= n; i++) {
				tpx = dis[i]; tpy = dis[i + n];
				if (tpx > tpy) swap(tpx, tpy);
				nm[tpx][tpy] = 0;
			}
		}
	} 
	
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值