【luogu P3327】约数个数和(莫比乌斯反演)

约数个数和

题目链接:luogu P3327

题目大意

给你 n,m 要你求 ∑i=1~n∑j=1~m d(ij),d 是约数个数。
多组数据。

思路

首先由一个比较神奇的东西:
d ( i j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1] d(ij)=xiyj[gcd(x,y)=1]

这里证明一下:
先看我们可以只看一个质数的部分。
假设它的因子的出现次数是 x x x i i i 中有 a a a 个, j j j 中有 b b b 个,那 i j ij ij 中就是 a + b a+b a+b 个。

如果 x ⩽ a x\leqslant a xa,那它在 i i i 中会出现被数到。
那如果 x > a x>a x>a,我们可以在 j j j 中数一个 x − a x-a xa 就表示满了之后再我那个这边的个数。

所以是对的。

然后就来化式子:
∑ i = 1 n ∑ j = 1 m d ( i j ) \sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij) i=1nj=1md(ij)
= ∑ i = 1 n ∑ j = 1 m ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] =\sum\limits_{i=1}^n\sum\limits_{j=1}^m\sum\limits_{x|i}\sum\limits_{y|j}[gcd(x,y)=1] =i=1nj=1mxiyj[gcd(x,y)=1]
= ∑ x = 1 n ∑ y = 1 m ∑ i = 1 n x ∑ j = 1 m y [ g c d ( x , y ) = 1 ] =\sum\limits_{x=1}^n\sum\limits_{y=1}^m\sum\limits_{i=1}^{\frac{n}{x}}\sum\limits_{j=1}^{\frac{m} {y}}[gcd(x,y)=1] =x=1ny=1mi=1xnj=1ym[gcd(x,y)=1]
= ∑ x = 1 n ∑ y = 1 m ⌊ n x ⌋ ⌊ m y ⌋ [ g c d ( x , y ) = 1 ] =\sum\limits_{x=1}^n\sum\limits_{y=1}^m\left\lfloor\dfrac{n}{x}\right\rfloor\left\lfloor\dfrac{m} {y}\right\rfloor[gcd(x,y)=1] =x=1ny=1mxnym[gcd(x,y)=1]
= ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ [ g c d ( i , j ) = 1 ] =\sum\limits_{i=1}^n\sum\limits_{j=1}^m\left\lfloor\dfrac{n}{i}\right\rfloor\left\lfloor\dfrac{m} {j}\right\rfloor[gcd(i,j)=1] =i=1nj=1minjm[gcd(i,j)=1]

然后莫反。
f x = ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ [ g c d ( i , j ) = x ] f_x=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\left\lfloor\dfrac{n}{i}\right\rfloor\left\lfloor\dfrac{m} {j}\right\rfloor[gcd(i,j)=x] fx=i=1nj=1minjm[gcd(i,j)=x]

g i = ∑ x ∣ i f i = ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ [ x ∣ g c d ( i , j ) ] g_i=\sum\limits_{x|i}f_i=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\left\lfloor\dfrac{n}{i}\right\rfloor\left\lfloor\dfrac{m} {j}\right\rfloor[x|gcd(i,j)] gi=xifi=i=1nj=1minjm[xgcd(i,j)]
= ∑ i = 1 n ∑ j = 1 m ⌊ n i ⌋ ⌊ m j ⌋ ∑ x ∣ i , x ∣ j 1 =\sum\limits_{i=1}^n\sum\limits_{j=1}^m\left\lfloor\dfrac{n}{i}\right\rfloor\left\lfloor\dfrac{m} {j}\right\rfloor\sum\limits_{x|i,x|j}1 =i=1nj=1minjmxi,xj1
= ∑ x ∑ i = 1 ⌊ n x ⌋ ∑ j = 1 ⌊ m x ⌋ ⌊ n i x ⌋ ⌊ m j x ⌋ =\sum\limits_{x}\sum\limits_{i=1}^{\left\lfloor\frac{n}{x}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{x}\right\rfloor}\left\lfloor\dfrac{n}{ix}\right\rfloor\left\lfloor\dfrac{m} {jx}\right\rfloor =xi=1xnj=1xmixnjxm

f i = ∑ i ∣ x μ ( x i ) g x f_i=\sum\limits_{i|x}\mu(\dfrac{x}{i})g_x fi=ixμ(ix)gx
f 1 = ∑ 1 ∣ x μ ( x 1 ) g x = ∑ i = 1 min ⁡ ( n , m ) μ ( i ) g i f_1=\sum\limits_{1|x}\mu(\dfrac{x}{1})g_x=\sum\limits_{i=1}^{\min(n,m)}\mu(i)g_i f1=1xμ(1x)gx=i=1min(n,m)μ(i)gi

那询问我们可以预处理 μ \mu μ 的前缀和然后用数论分块求 g i g_i gi
(用数论分块预处理 ∑ i = 1 x ⌊ x i ⌋ \sum\limits_{i=1}^x\left\lfloor\dfrac{x}{i}\right\rfloor i=1xix
(然后用数论分块搞 ∑ x \sum\limits_{x} x 的部分)

然后每次询问你就跑一次数论分块 O ( n ) O(\sqrt{n}) O(n ),所以询问的复杂度是 O ( T n ) O(T\sqrt{n}) O(Tn ) 可以的。

代码

#include<cstdio>
#include<iostream>
#define ll long long

using namespace std;

int T, n, m, prime[50001];
ll f[50001], ans, miu[50001];
bool np[50001];

int main() {
	miu[1] = 1;
	for (int i = 2; i <= 50000; i++) {
		if (!np[i]) prime[++prime[0]] = i, miu[i] = -1;
		for (int j = 1; j <= prime[0] && i * prime[j] <= 50000; j++) {
			np[i * prime[j]] = 1;
			if (i % prime[j] == 0) {miu[i * prime[j]] = 0; break;}
				else miu[i * prime[j]] = -miu[i];
		}
	}
	for (int i = 1; i <= 50000; i++) miu[i] += miu[i - 1];
	
	for (int i = 1; i <= 50000; i++) {
		int r;
		for (int l = 1; l <= i; l = r + 1) {
			r = i / (i / l);
			f[i] += 1ll * (r - l + 1) * (i / l);
		}
	}
	
	scanf("%d", &T);
	while (T--) {
		scanf("%d %d", &n, &m);
		ans = 0;
		
		if (n > m) swap(n, m);
		
		int r;
		for (int l = 1; l <= n; l = r + 1) {
			r = min(n / (n / l), m / (m / l));
			ans += (miu[r] - miu[l - 1]) * f[n / l] * f[m / l];
		}
		
		printf("%lld\n", ans);
	}
	
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值