【luogu P4308】幸福路径(倍增)(模拟)

该博客讨论了一种有向图的路径优化问题,其中每个节点带有权重,且每步行走体力会衰减。通过矩阵快速幂的方法,求解在体力衰减条件下能获得的最大路径分数,保留一位小数。博主分享了算法思路、代码实现和问题解决的关键点,包括初始状态处理和精度控制。
摘要由CSDN通过智能技术生成

幸福路径

题目链接:luogu P4308

题目大意

给你一个有向图,点有点权,然后你一开始的体力是 1,某走一步体力会乘上一个小于 1 的小数,然后到每个点的分数是当前体力乘那个点的点权。
然后一条路径的分数是它每次经过点的分数和,然后要你求最大的路径分数保留一位小数的结果。

思路

你会发现数的值域很小,而且只用保留一位小数。

然后你发现随着乘,它的精度会越来越小,最后就无法影响答案。
那你就考虑暴力乘(那当然是不行的)。

然后你考虑加速这个过程,其实就是一个矩阵乘法(或者你直接就相当于倍增)

那(倍增不要钱),所以我们可以直接搞 100 100 100 次倍增,那它这个精度是按 log ⁡ \log log 级别跑的所以也够了。

然后要小小注意的就是你不要先把一开始位置的贡献算上(这样就不好转移了),然后输出之前记得加回去。
然后你初始化是设成很大的负数,那因为可能就不动了,所以一开始从自己到自己费用是 0 0 0 而不是很大负数。

代码

#include<cstdio>
#include<iostream>
#define db double

using namespace std;

int n, m, v0, x, y;
db w[101], p, f[101][101][101], ans;
bool a[101][101];

int main() {
	scanf("%d %d", &n, &m);
	for (int i = 1; i <= n; i++) scanf("%lf", &w[i]);
	scanf("%d", &v0); scanf("%lf", &p);
	for (int i = 1; i <= m; i++) {
		scanf("%d %d", &x, &y); a[x][y] = 1;
	}
	
	for (int i = 1; i <= n; i++)//注意一开始可以根本不走
		for (int j = 1; j <= n; j++)
			if (i != j) f[1][i][j] = -1e100;
	for (int i = 2; i <= 100; i++)
		for (int j = 1; j <= n; j++)
			for (int k = 1; k <= n; k++)
					f[i][j][k] = -1e100;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			if (a[i][j])
				f[1][i][j] = p * w[j];
	db run = p;
	for (int i = 2; i <= 100; i++) {//然后直接倍增转移
		for (int j = 1; j <= n; j++)
			for (int k = 1; k <= n; k++)
				for (int l = 1; l <= n; l++) {
					f[i][k][l] = max(f[i][k][l], f[i - 1][k][j] + f[i - 1][j][l] * run);
				}
		run = run * run;
	}
	
	for (int i = 1; i <= 100; i++) {
		for (int j = 1; j <= n; j++) {
			ans = max(ans, f[i][v0][j]);
		}
	}
	printf("%.1lf", ans + w[v0]);//把一开始的加上(你没有算开头的)
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值