【ybt金牌导航8-5-4】【luogu P4128】有色图(dfs)(Polya定理)(分类讨论)

有色图

题目链接:ybt金牌导航8-5-4 / luogu P4128

题目大意

有个 n 个点的无向完全图,然后每个边会有颜色,一共有 m 种颜色。
然后如果一个完全图一个图可以通过置换变成另一个图,那我们就说这两个完全图是本质相同的。
然后问你有多少本质不同的图。

思路

我们考虑用 Polya 定理。

a n s = 1 ∣ M ∣ ∑ m c ( r ) ans=\dfrac{1}{|M|}\sum m^{c(r)} ans=M1mc(r)

然后你考虑如何求每个 c ( r ) c(r) c(r) 即循环个数。
然后你发现你前面的 ∣ M ∣ |M| M 是点的置换(是 n ! n! n!),然后你 c ( r ) c(r) c(r) 里面要的是边的置换循环个数。

那你就考虑怎么求,考虑边的置换方式:
然后你考虑先把点的置换表示出来: ( a 1 , a 2 , . . . ) ( b 1 , b 2 , . . . ) ( c 1 , c 2 , . . . ) . . . (a_1,a_2,...)(b_1,b_2,...)(c_1,c_2,...)... (a1,a2,...)(b1,b2,...)(c1,c2,...)...,它们每个循环的长度可以表示为 l 1 , l 2 , l 3 , . . . l_1,l_2,l_3,... l1,l2,l3,...

然后你考虑边的置换方式其实可以分类成两种:

  1. 边连接的两个点在不同点循环:

假设两个点所在的循环是 ( a 1 , a 2 , . . . ) , ( b 1 , b 2 , . . . ) (a_1,a_2,...),(b_1,b_2,...) (a1,a2,...),(b1,b2,...),然后长度分别是 l 1 , l 2 l_1,l_2 l1,l2
然后不难看出边的循环节都是 lcm ( l 1 , l 2 ) \text{lcm}(l_1,l_2) lcm(l1,l2),然后一共边有 l 1 l 2 l_1l_2 l1l2 个点对,所以就是 l 2 l 2 lcm ( l 1 , l 2 ) = gcd ⁡ ( l 1 , l 2 ) \dfrac{l_2l_2}{\text{lcm}(l_1,l_2)}=\gcd(l_1,l_2) lcm(l1,l2)l2l2=gcd(l1,l2)

  1. 边链接的两个点在同一个点循环。

假设这个循环是 ( a 1 , a 2 , . . . ) (a_1,a_2,...) (a1,a2,...),长度是 l l l

那我们再分奇偶讨论。

如果长度是奇数,就是循环节是 l l l,一共 ( l 2 ) \binom{l}{2} (2l) 个点对,就是 l − 1 2 \dfrac{l-1}{2} 2l1 个循环个数。
如果长度是偶数,那还会有一种特殊的置换,就是两个点间隔 l 2 \dfrac{l}{2} 2l,这样它走一样就位置交换,那由于你是无向的边,所以就循环节是 l 2 \dfrac{l}{2} 2l。那就是 ( l 2 ) − l 2 l + 1 = l 2 \dfrac{\binom{l}{2}-\frac{l}{2}}{l}+1=\dfrac{l}{2} l(2l)2l+1=2l

其实我们总结一下,就是 ⌊ l 2 ⌋ \left\lfloor\dfrac{l}{2}\right\rfloor 2l

那我们就可以知道对于一个点置换,它边置换的循环数就是 ∑ i = 1 l ⌊ l i 2 ⌋ + ∑ i = 1 l ∑ j = i + 1 l gcd ⁡ ( l i , l j ) \sum\limits_{i=1}^l\left\lfloor\dfrac{l_i}{2}\right\rfloor+\sum\limits_{i=1}^l\sum\limits_{j=i+1}^l\gcd(l_i,l_j) i=1l2li+i=1lj=i+1lgcd(li,lj)

然后我们考虑怎么统计每个置换的答案,直接枚举肯定是不行的。
那我们考虑把 l i l_i li 排序,然后对于排序后的结果我们直接暴力枚举,然后用组合数算出有多少种置换在排序后会变成这样。

首先暴力枚举由于每次新的数一定会小于等于之前的数,而且所有数的和已经确定,所以这个复杂度看似很大其实不大。(见 A296010
然后你考虑怎么用组合数算有多少中置换。

一开始直接看 1 ∼ n 1\sim n 1n 每个点在哪个循环,那就是一个多重组合数: n ! ∏ l i ! \dfrac{n!}{\prod l_i!} li!n!
那每个置换,你可以分配它内部的顺序,如果是链就是 l i ! l_i! li!,但是由于你是环,可以转,所以是 ( l i − 1 ) ! (l_i-1)! (li1)!,然后每个都这么乘,那它就变成了 n ! ∏ l i \dfrac{n!}{\prod l_i} lin!
然后你发现还是会算重,因为你相同长度的置换你交换了不一样,所以还要每个除 1 ∏ c i ! \dfrac{1}{\prod c_i!} ci!1。( c x = ∑ [ l i = x ] c_x=\sum [l_i=x] cx=[li=x]

然后全部合起来:
1 n ! ∑ l n ! ∏ l i ∏ c i ! m ∑ i ⌊ l i 2 ⌋ + ∑ i = 1 l ∑ j = i + 1 l gcd ⁡ ( l i , l j ) \dfrac{1}{n!}\sum\limits_{l}\dfrac{n!}{\prod l_i\prod c_i!}m^{\sum\limits_{i}\left\lfloor\frac{l_i}{2}\right\rfloor+\sum\limits_{i=1}^l\sum\limits_{j=i+1}^l\gcd(l_i,l_j)} n!1llici!n!mi2li+i=1lj=i+1lgcd(li,lj)

然后里外的 n ! n! n! 互相消去:
∑ l 1 ∏ l i ∏ c i ! m ∑ i ⌊ l i 2 ⌋ + ∑ i = 1 l ∑ j = i + 1 l gcd ⁡ ( l i , l j ) \sum\limits_{l}\dfrac{1}{\prod l_i\prod c_i!}m^{\sum\limits_{i}\left\lfloor\frac{l_i}{2}\right\rfloor+\sum\limits_{i=1}^l\sum\limits_{j=i+1}^l\gcd(l_i,l_j)} llici!1mi2li+i=1lj=i+1lgcd(li,lj)

然后就可以搞了。

代码

#include<cstdio>
#define ll long long

using namespace std;

ll n, m, mo, b[55], jc[55], ans, inv[55];

ll ksm(ll x, ll y) {
	ll re = 1;
	while (y) {
		if (y & 1) re = re * x % mo;
		x = x * x % mo;
		y >>= 1;
	}
	return re;
}

ll gcd(ll x, ll y) {
	if (!y) return x;
	return gcd(y, x % y);
}

//ll clac(ll cnt) {//这些就直接每加一个就直接统计了,就不用这个了
//	ll re = 0;
//	
//	for (int i = 1; i <= cnt; i++) {
//		re += b[i] / 2;
//		for (int j = i + 1; j <= cnt; j++)
//			re += gcd(b[i], b[j]);
//	}
//	
//	return ksm(m, re);
//}

void dfs(ll now, ll num, ll di, ll cnt, ll sum) {
	if (now == n) {
		ans = (ans + ksm(m, sum) * di % mo) % mo;
		return ;
	}
	if (num == 1) {
		for (int i = 1; i <= n - now; i++) {
			b[cnt + i] = 1;
			sum = sum + b[cnt + i] / 2;
			for (int j = 1; j < cnt + i; j++)
				sum = sum + gcd(b[cnt + i], b[j]);
			di = di * inv[i] % mo;
		}
		ans = (ans + ksm(m, sum) * di % mo) % mo;
		return ;
	}
	dfs(now, num - 1, di, cnt, sum);
	for (int i = 1; now + num * i <= n; i++) {//枚举这个数放的个数
		b[cnt + i] = num;
		sum = sum + b[cnt + i] / 2;
		for (int j = 1; j < cnt + i; j++)
			sum = sum + gcd(b[cnt + i], b[j]);
		di = di * inv[num] % mo * inv[i] % mo;
		dfs(now + num * i, num - 1, di, cnt + i, sum);
	} 
}

int main() {
	scanf("%lld %lld %lld", &n, &m, &mo);
	
	jc[0] = 1; for (int i = 1; i <= n; i++) jc[i] = jc[i - 1] * i % mo;//预处理
	inv[0] = inv[1] = 1; for (int i = 2; i <= n; i++) inv[i] = inv[mo % i] * (mo - mo / i) % mo;
	dfs(0, n, 1, 0, 0);
	
	printf("%lld", ans);
	
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值