树
题目链接:51nod 1353
题目大意
给你一棵树,然后问你有多少种方案能删掉几条边,使得每个连通块的大小都大于等于 k。
思路
教练的任务,结果发现自己写挂了,搞了半天才好。
(所以就写了个代码)
大概就是 DP,设 f i , j f_{i,j} fi,j 为 i i i 的子树, i i i 所在的连通块大小为 j j j。(特殊的,如果 j = 0 j=0 j=0 代表 i i i 所在的连通块已经上交)
然后你转移就是类似卷积的转移,然后因为你可以枚举两个的子树,所以卷积反而会更慢,直接搞就是 O ( n 2 ) O(n^2) O(n2)。
然后你要记得乘上子树跟你独立的贡献。
然后
f
u
,
0
f_{u,0}
fu,0 转移就是
∑
i
=
k
s
z
u
f
u
,
i
\sum\limits_{i=k}^{sz_u}f_{u,i}
i=k∑szufu,i。
代码
#include<cstdio>
#include<vector>
#define ll long long
#define mo 1000000007
using namespace std;
int n, k, x, y, sz[2001];
vector <int> G[2001];
ll f[2001][2001];
//sz:当前点子树的大小
//f:DP的数组
//G:存树的边
void dfs(int u, int father) {
sz[u] = 1;//一开始这棵树只有这个点
f[u][1] = 1;//那一开始就只有一种可能:一个点
for (int x = 0; x < G[u].size(); x++) {//遍历每条边
int v = G[u][x]; if (v == father) continue;//不走往父亲走的边
dfs(v, u);
for (int i = sz[u]; i >= 1; i--) {
for (int j = sz[v]; j >= 1; j--) {//转移(两个都从大到小这样就不会因为改变f[u]值导致答案改变)
(f[u][i + j] += f[u][i] * f[v][j] % mo) %= mo;
}
f[u][i] = f[u][i] * f[v][0] % mo;//算上它跟这个子树独立开的贡献
}
sz[u] += sz[v];//这个作为子树加进来
}
for (int i = k; i <= sz[u]; i++)//转移
(f[u][0] += f[u][i]) %= mo;
}
int main() {
scanf("%d %d", &n, &k);
for (int i = 1; i < n; i++) {
scanf("%d %d", &x, &y);
G[x].push_back(y); G[y].push_back(x);//建出树
}
dfs(1, 0);
printf("%lld", f[1][0]);
return 0;
}