【51nod 1353】树(树形DP)

题目链接:51nod 1353

题目大意

给你一棵树,然后问你有多少种方案能删掉几条边,使得每个连通块的大小都大于等于 k。

思路

教练的任务,结果发现自己写挂了,搞了半天才好。
(所以就写了个代码)

大概就是 DP,设 f i , j f_{i,j} fi,j i i i 的子树, i i i 所在的连通块大小为 j j j。(特殊的,如果 j = 0 j=0 j=0 代表 i i i 所在的连通块已经上交)

然后你转移就是类似卷积的转移,然后因为你可以枚举两个的子树,所以卷积反而会更慢,直接搞就是 O ( n 2 ) O(n^2) O(n2)

然后你要记得乘上子树跟你独立的贡献。
然后 f u , 0 f_{u,0} fu,0 转移就是 ∑ i = k s z u f u , i \sum\limits_{i=k}^{sz_u}f_{u,i} i=kszufu,i

代码

#include<cstdio>
#include<vector>
#define ll long long
#define mo 1000000007 

using namespace std;

int n, k, x, y, sz[2001];
vector <int> G[2001];
ll f[2001][2001];
//sz:当前点子树的大小 
//f:DP的数组
//G:存树的边 

void dfs(int u, int father) {
	sz[u] = 1;//一开始这棵树只有这个点 
	f[u][1] = 1;//那一开始就只有一种可能:一个点 
	for (int x = 0; x < G[u].size(); x++) {//遍历每条边 
		int v = G[u][x]; if (v == father) continue;//不走往父亲走的边 
		dfs(v, u);
		for (int i = sz[u]; i >= 1; i--) {
			for (int j = sz[v]; j >= 1; j--) {//转移(两个都从大到小这样就不会因为改变f[u]值导致答案改变) 
				(f[u][i + j] += f[u][i] * f[v][j] % mo) %= mo;
			}
			f[u][i] = f[u][i] * f[v][0] % mo;//算上它跟这个子树独立开的贡献 
		}
		sz[u] += sz[v];//这个作为子树加进来 
	}
	for (int i = k; i <= sz[u]; i++)//转移 
		(f[u][0] += f[u][i]) %= mo;
}

int main() {
	scanf("%d %d", &n, &k);
	for (int i = 1; i < n; i++) {
		scanf("%d %d", &x, &y);
		G[x].push_back(y); G[y].push_back(x);//建出树 
	}
	
	dfs(1, 0);
	printf("%lld", f[1][0]);
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值