Place the Robots
题目链接:ZOJ 1654
题目大意
给你一个网格图,然后有墙、空地和草地。
你可以放点在空地上,然后你要保证一个点它同一行同一列上的别的点都有一个墙隔开。
然后问你最多能放多少个点。
思路
首先不难想到这么一种做法:
直接看每个空地放点,如果两个空地不能都放点,就连边,然后跑最大独立集。
但是你会发现它不一定能弄成二分图,那一般图的最大独立集是 NP-Hard 不太行。
然后你考虑换一个方法,从网格图入手。
然后你会发现因为是一行一列,那我们可以把每行每列由墙分开的块都找出来。
那这些块每个至多放一个点,毕竟放了别的都不能放。
那你会发现行之间,列之间没有关系,所以它就变成了一个二分图!
那你考虑这些行列之间会怎样。
你可以考虑用一个边代表一个空地放一个点:这个点要放你就要连这个边,让这两个块都不能再放了。
然后跑最大匹配就是答案了。
代码
#include<queue>
#include<cstdio>
#include<iostream>
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std;
const int N = 50 + 5;
const int M = N * N + 100;
int n, m, npl[M << 1], nl[M << 1], nr[M << 1];
struct node {
int x, to, nxt, op;
}e[(M * M) << 1];
int le[M << 1], KK, S, T, tot;
int lee[M << 1], deg[M << 1];
char a[N][N];
//网络流模板
void add(int x, int y, int z) {
e[++KK] = (node){z, y, le[x], KK + 1}; le[x] = KK;
e[++KK] = (node){0, x, le[y], KK - 1}; le[y] = KK;
}
bool bfs() {
for (int i = 1; i <= tot; i++) lee[i] = le[i], deg[i] = 0;
queue <int> q; q.push(S); deg[S] = 1;
while (!q.empty()) {
int now = q.front(); q.pop();
for (int i = le[now]; i; i = e[i].nxt)
if (e[i].x && !deg[e[i].to]) {
deg[e[i].to] = deg[now] + 1;
if (e[i].to == T) return 1; q.push(e[i].to);
}
}
return 0;
}
int dfs(int now, int sum) {
if (now == T) return sum;
int go = 0;
for (int &i = lee[now]; i; i = e[i].nxt)
if (e[i].x && deg[e[i].to] == deg[now] + 1) {
int this_go = dfs(e[i].to, min(sum - go, e[i].x));
if (this_go) {
e[i].x -= this_go; e[e[i].op].x += this_go;
go += this_go; if (go == sum) return go;
}
}
if (go != sum) deg[now] = -1; return go;
}
int dinic() {
int re = 0;
while (bfs()) re += dfs(S, INF);
return re;
}
int main() {
int TT; scanf("%d", &TT);
for (int qq = 1; qq <= TT; qq++) {
scanf("%d %d", &n, &m);//读入
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
a[i][j] = getchar(); while (a[i][j] != '#' && a[i][j] != '*' && a[i][j] != 'o') a[i][j] = getchar();
}
tot = 0; int nn = 0, mm = 0;//先看列的
for (int i = 1; i <= n; i++) {
for (int L = 1, R; L <= m; L = R + 1) {
R = L; if (a[i][L] == '#') continue;
bool kong = (a[i][L] == 'o');
while (R < m && a[i][R + 1] != '#') R++, kong |= (a[i][R] == 'o');//找没有墙的一段
if (kong) {//要有空地
nn++; tot++; npl[tot] = i; nl[tot] = L; nr[tot] = R;
}
}
}
for (int i = 1; i <= m; i++) {//行的
for (int L = 1, R; L <= n; L = R + 1) {
R = L; if (a[L][i] == '#') continue;
bool kong = (a[L][i] == 'o');
while (R < n && a[R + 1][i] != '#') R++, kong |= (a[R][i] == 'o');//跟上面同理
if (kong) {
mm++; tot++; npl[tot] = i; nl[tot] = L; nr[tot] = R;
}
}
}
//然后枚举行和列找有交的连边
for (int i = 1; i <= nn; i++)
for (int j = 1; j <= mm; j++) {
if (nl[i] <= npl[nn + j] && npl[nn + j] <= nr[i])
if (nl[nn + j] <= npl[i] && npl[i] <= nr[nn + j])//判断是否有交
if (a[npl[i]][npl[nn + j]] == 'o')//判断交点是否是空地
add(i, nn + j, 1);
}
S = ++tot; T = ++tot;
for (int i = 1; i <= nn; i++) add(S, i, 1);
for (int i = 1; i <= mm; i++) add(nn + i, T, 1);
printf("Case :%d\n%d\n", qq, dinic());
for (int i = 1; i <= tot; i++) le[i] = 0; KK = 0;//清空
}
return 0;
}