One Third
题目链接:luogu AGC032F
题目大意
有一个环,你每次会随机选一个半径切一刀,然后最后形成若干块,要你选一段连续的块,使得它们的面积和最接近 1/3,问你这个距离的最小期望。
思路
有一个神奇的转化,因为是
1
3
\dfrac{1}{3}
31,你考虑把你切的每一道当成颜色
1
1
1,转
120
°
120\degree
120° 变成颜色
2
2
2,再转一次变成颜色
3
3
3。
那其实答案就变成了你取第一刀颜色
1
,
2
1,2
1,2 之间的区间(包括这两个点),然后答案就是不同颜色的点的最近距离。
因为不同颜色相当于已经转了
1
3
\dfrac{1}{3}
31,而没有转到三分之一的可以通过第一刀的两个颜色来匹配。
那问题是怎么求,考虑一个小小的容斥,枚举第
k
k
k 小是第一个两段不同颜色的。
那前面的
k
−
1
k-1
k−1 个是一样的,然后再减去前面
k
k
k 个都一样的情况(如果是
k
=
n
k=n
k=n 就不用减,因为一定不一样,边界嘛)
那前面一样的话,我们可以类似缩成一个点,那剩下的就是
n
−
1
−
(
k
−
1
)
n-1-(k-1)
n−1−(k−1) 个乱选。(
n
−
1
n-1
n−1 是因为开头的也算是确定了)
所以这个一样的概率是
3
n
−
1
−
(
k
−
1
)
3
n
−
1
=
3
1
−
k
\dfrac{3^{n-1-(k-1)}}{3^{n-1}}=3^{1-k}
3n−13n−1−(k−1)=31−k,那
k
k
k 个都一样同理可以算出是
3
−
k
3^{-k}
3−k
所以答案相当于这个:
1
3
∑
k
=
1
n
(
3
1
−
k
−
3
−
k
[
k
≠
n
]
)
E
(
L
k
)
\dfrac{1}{3}\sum\limits_{k=1}^n(3^{1-k}-3^{-k}[k\neq n])E(L_k)
31k=1∑n(31−k−3−k[k=n])E(Lk)
其中
E
(
L
k
)
E(L_k)
E(Lk) 是第
k
k
k 短的期望长度。
这个可以直接上随机红包的结论,直接是
E
(
L
k
)
=
1
n
∑
i
=
1
k
1
n
−
i
+
1
E(L_k)=\dfrac{1}{n}\sum\limits_{i=1}^k\dfrac{1}{n-i+1}
E(Lk)=n1i=1∑kn−i+11
然后带进去就可以
O
(
n
)
O(n)
O(n) 求了。
(好像说还可以化解爱你一下式子把那个
3
1
−
k
,
3
−
k
3^{1-k},3^{-k}
31−k,3−k 错位抵消一下得到每个的系数之类的。
代码
#include<cstdio>
#define mo 1000000007
using namespace std;
const int N = 1e6 + 1000;
int n, k, jc[N], inv[N], invs[N], ans;
int add(int x, int y) {return x + y >= mo ? x + y - mo : x + y;}
int dec(int x, int y) {return x < y ? x - y + mo : x - y;}
int mul(int x, int y) {return 1ll * x * y % mo;}
int Sum(int l, int r) {
if (!l) return invs[r];
return dec(invs[r], invs[l - 1]);
}
int main() {
jc[0] = 1; for (int i = 1; i < N; i++) jc[i] = mul(jc[i - 1], i);
inv[0] = inv[1] = 1; for (int i = 2; i < N; i++) inv[i] = mul(inv[mo % i], mo - mo / i);
invs[0] = 1; for (int i = 1; i < N; i++) invs[i] = add(invs[i - 1], inv[i]);
scanf("%d", &n);
int ans = 0;
for (int k = 1, thr = 1; k <= n; k++, thr = mul(thr, inv[3])) {
int sum = Sum(n - k + 1, n);
sum = mul(sum, inv[n]);
sum = mul(sum, dec(thr, (k == n) ? 0 : mul(thr, inv[3])));
ans = add(ans, sum);
}
ans = mul(ans, inv[3]);
printf("%d", ans);
return 0;
}