【luogu AGC032F】One Third(数学)(期望)

One Third

题目链接:luogu AGC032F

题目大意

有一个环,你每次会随机选一个半径切一刀,然后最后形成若干块,要你选一段连续的块,使得它们的面积和最接近 1/3,问你这个距离的最小期望。

思路

有一个神奇的转化,因为是 1 3 \dfrac{1}{3} 31,你考虑把你切的每一道当成颜色 1 1 1,转 120 ° 120\degree 120° 变成颜色 2 2 2,再转一次变成颜色 3 3 3
那其实答案就变成了你取第一刀颜色 1 , 2 1,2 1,2 之间的区间(包括这两个点),然后答案就是不同颜色的点的最近距离。
因为不同颜色相当于已经转了 1 3 \dfrac{1}{3} 31,而没有转到三分之一的可以通过第一刀的两个颜色来匹配。

那问题是怎么求,考虑一个小小的容斥,枚举第 k k k 小是第一个两段不同颜色的。
那前面的 k − 1 k-1 k1 个是一样的,然后再减去前面 k k k 个都一样的情况(如果是 k = n k=n k=n 就不用减,因为一定不一样,边界嘛)
那前面一样的话,我们可以类似缩成一个点,那剩下的就是 n − 1 − ( k − 1 ) n-1-(k-1) n1(k1) 个乱选。( n − 1 n-1 n1 是因为开头的也算是确定了)
所以这个一样的概率是 3 n − 1 − ( k − 1 ) 3 n − 1 = 3 1 − k \dfrac{3^{n-1-(k-1)}}{3^{n-1}}=3^{1-k} 3n13n1(k1)=31k,那 k k k 个都一样同理可以算出是 3 − k 3^{-k} 3k

所以答案相当于这个:
1 3 ∑ k = 1 n ( 3 1 − k − 3 − k [ k ≠ n ] ) E ( L k ) \dfrac{1}{3}\sum\limits_{k=1}^n(3^{1-k}-3^{-k}[k\neq n])E(L_k) 31k=1n(31k3k[k=n])E(Lk)

其中 E ( L k ) E(L_k) E(Lk) 是第 k k k 短的期望长度。
这个可以直接上随机红包的结论,直接是 E ( L k ) = 1 n ∑ i = 1 k 1 n − i + 1 E(L_k)=\dfrac{1}{n}\sum\limits_{i=1}^k\dfrac{1}{n-i+1} E(Lk)=n1i=1kni+11

然后带进去就可以 O ( n ) O(n) O(n) 求了。
(好像说还可以化解爱你一下式子把那个 3 1 − k , 3 − k 3^{1-k},3^{-k} 31k,3k 错位抵消一下得到每个的系数之类的。

代码

#include<cstdio>
#define mo 1000000007

using namespace std;

const int N = 1e6 + 1000;
int n, k, jc[N], inv[N], invs[N], ans;

int add(int x, int y) {return x + y >= mo ? x + y - mo : x + y;}
int dec(int x, int y) {return x < y ? x - y + mo : x - y;}
int mul(int x, int y) {return 1ll * x * y % mo;}

int Sum(int l, int r) {
	if (!l) return invs[r];
	return dec(invs[r], invs[l - 1]);
}

int main() {
	jc[0] = 1; for (int i = 1; i < N; i++) jc[i] = mul(jc[i - 1], i);
	inv[0] = inv[1] = 1; for (int i = 2; i < N; i++) inv[i] = mul(inv[mo % i], mo - mo / i);
	invs[0] = 1; for (int i = 1; i < N; i++) invs[i] = add(invs[i - 1], inv[i]);
	
	scanf("%d", &n);
	int ans = 0;
	for (int k = 1, thr = 1; k <= n; k++, thr = mul(thr, inv[3])) {
		int sum = Sum(n - k + 1, n);
		sum = mul(sum, inv[n]);
		sum = mul(sum, dec(thr, (k == n) ? 0 : mul(thr, inv[3])));
		ans = add(ans, sum);
	}
	ans = mul(ans, inv[3]);
	printf("%d", ans);
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值