【YBT2023寒假Day1 B】不跪模样(树链剖分)(线段树)

不跪模样

题目链接:YBT2023寒假Day1 B

题目大意

给你一棵有根数,点有点权,两种操作:
对于所有 x 子树内与 x 距离不超过 2 的点,将其点权加 v。
询问 x 子树中,满足 i<=j 且 i,j 的 LCA 是 x 的数对 (i,j),它们点权和的和。

思路

首先看这个 LCA 要怎么处理,不难想到,可以用容斥的方法(因为子树之间的方法涉及子树之间不好维护)
就是这个子树里面的点对减去每个儿子子树里面的点对(注意这里面都有 i ⩽ j i\leqslant j ij 的限制)

然后因为是点权和,我们可以尝试分离两个点,不难发现其实每个点的出现次数都是子树大小 + 1 +1 +1(加一是因为自己跟自己的时候算了两次)
那一个子树 x x x 里面的点对的权值和 S ( x ) = ( s z x + 1 ) s u m x S(x)=(sz_x+1)sum_x S(x)=(szx+1)sumx s z x sz_x szx 是子树大小, s u m x sum_x sumx 是子树权值和)


但是众多的儿子,一个一个减也是不行的。
考虑重链剖分,也就是树链剖分,那问题就是 S ( x ) − S ( s o n x ) − ∑ y ∈ x 轻儿子 S ( y ) S(x)-S(son_x)-\sum\limits_{y\in x轻儿子}S(y) S(x)S(sonx)yx轻儿子S(y)

那前面两个要求的,是单点,那就只跟 s u m x sum_x sumx 有关,于是我们先看看如何维护 s u m x sum_x sumx
考虑把 s u m x sum_x sumx 的部分分成三部分:

  1. 一开始就有的或者是或者是加值的时候所有加的点都在子树内的(也就是加的点在子树内)

那这个部分我们可以直接 dfs 序列搞一开始的,然后后面加的因为整个都在子树内,可以直接给上面的一条祖先链都加上 v ∗ d 2 x v*d2_x vd2x(设 d 2 x d2_x d2x x x x 子树内与 x x x 距离不超过 2 2 2 的点数)
2. 在 ( f a x , v ) (fa_x,v) (fax,v) 的修改
3. 在 ( f a f a x , v ) (fa_{fa_x},v) (fafax,v) 的修改

那这两个其实差不多,因为一个点影响它贡献量的分别只有一个点,那我们直接在加值的位置打上标记,到时直接问就好。
不过注意的是第二个加的是 v ∗ d 1 x v*d1_x vd1x(设 d 1 x d1_x d1x x x x 字数内与 x x x 距离不超过 1 1 1 的点数)
而第三个加的是 v v v


那么就是第三个部分,轻儿子的 S ( y ) S(y) S(y) 和。
那我们设 g ( x ) = ∑ y ∈ x 轻儿子 S ( y ) g(x)=\sum\limits_{y\in x轻儿子}S(y) g(x)=yx轻儿子S(y)
讨论加入一次操作 ( x , v ) (x,v) (x,v),要如何维护。
考虑类似上面的情况,也分成三种情况讨论:

  1. 如果 y y y x x x 的儿子,那 g ( y ) g(y) g(y) 要加上 d s y ∗ v ds_y*v dsyv(设 d s x ds_x dsx x x x 所有轻儿子 z z z s z z + 1 sz_z+1 szz+1 的和)
  2. 如果 y = x y=x y=x,那 g ( y ) g(y) g(y) 要加上 d s 1 y ∗ v ds1_y*v ds1yv(设 d s 1 y ds1_y ds1y x x x 所有轻儿子 z z z d 1 z ∗ ( s z z + 1 ) d1_z*(sz_z+1) d1z(szz+1) 的和)
  3. 如果 ( y , z ) (y,z) (y,z) 这条边是 x x x 到根路径上的一条边(其中 z z z y y y儿子),那 g ( y ) g(y) g(y) 要加上 d 2 ( x ) ∗ v ∗ ( s z z + 1 ) d2(x)*v*(sz_z+1) d2(x)v(szz+1) d 2 x d2_x d2x 我们上面定义了, x x x 子树内与 x x x 距离不超过 2 2 2 的点数)

第一个操作,这个儿子的话我们可以直接在父亲那里打标记(事实上这个标记跟上面的标记其实是一样的),那我们要求 g ( x ) g(x) g(x) 的时候先拿出维护的 g ( x ) g(x) g(x),再加上父亲的标记值乘上那个 d s x ds_{x} dsx 即可即可。
第二个两个操作,每次操作最多会影响一个点的 g g g 值,我们直接修改 g g g 值就好。
第三个操作,由于我们只修改轻链,所以在重链剖分上轻链的数量只有 log ⁡ n \log n logn,所以我们暴力跳到每个轻链去修改 g g g 值即可。
(这也是用重链剖分的原因)

那么这题就做好啦,具体的实现可以看代码。

代码

#include<cmath>
#include<cstdio>
#define uint unsigned int

using namespace std;

const int N = 3e5 + 100;
int n, Q, fa[N], le[N], KK, sz[N], son[N], top[N], dfn[N], idfn[N], d1[N], d2[N];
uint w[N], s[N], sum[N], wsum[N], tg[N], g[N], ds[N], ds1[N];
struct node {
	int to, nxt;
}e[N];

void add(int x, int y) {
	e[++KK] = (node){y, le[x]}; le[x] = KK;
}

void dfs0(int now, int father) {
	sz[now] = 1; wsum[now] = w[now]; d1[now] = d2[now] = 1;
	for (int i = le[now]; i; i = e[i].nxt) {
		dfs0(e[i].to, now); sz[now] += sz[e[i].to]; wsum[now] += wsum[e[i].to];
		d1[now]++; d2[now] += d1[e[i].to];
		if (sz[e[i].to] > sz[son[now]]) son[now] = e[i].to;
	}
}

void dfs1(int now, int father) {
	dfn[now] = ++dfn[0]; idfn[dfn[0]] = now;
	if (son[now]) {
		top[son[now]] = top[now]; dfs1(son[now], now);
	}
	for (int i = le[now]; i; i = e[i].nxt)
		if (e[i].to != son[now]) {
			top[e[i].to] = e[i].to; dfs1(e[i].to, now);
			g[now] += wsum[e[i].to] * (sz[e[i].to] + 1);
			ds[now] += sz[e[i].to] + 1;
			ds1[now] += d1[e[i].to] * (sz[e[i].to] + 1);
		}
}

struct XD_tree {
	uint f[N << 2], lzy[N << 2];
	
	void up(int now) {
		f[now] = f[now << 1] + f[now << 1 | 1];
	}
	
	void downa(int now, uint x) {
		f[now] += x; lzy[now] += x;
	}
	
	void down(int now) {
		if (lzy[now]) {
			downa(now << 1, lzy[now]); downa(now << 1 | 1, lzy[now]);
			lzy[now] = 0;
		}
	}
	
	void update(int now, int l, int r, int L, int R, uint x) {
		if (L <= l && r <= R) {
			downa(now, x); return ;
		}
		down(now); int mid = (l + r) >> 1;
		if (L <= mid) update(now << 1, l, mid, L, R, x);
		if (mid < R) update(now << 1 | 1, mid + 1, r, L, R, x);
		up(now);
	}
	
	uint query(int now, int l, int r, int L, int R) {
		if (L <= l && r <= R) return f[now];
		down(now); int mid = (l + r) >> 1; uint re = 0;
		if (L <= mid) re += query(now << 1, l, mid, L, R);
		if (mid < R) re += query(now << 1 | 1, mid + 1, r, L, R);
		return re;
	}
	
	void build(int now, int l, int r) {
		if (l == r) {
			f[now] = wsum[idfn[l]]; return ;
		}
		int mid = (l + r) >> 1;
		build(now << 1, l, mid); build(now << 1 | 1, mid + 1, r);
		up(now);
	}
}T;

uint Sone(int now) {
	if (!now) return 0;
	uint re = T.query(1, 1, n, dfn[now], dfn[now]);
	re += tg[fa[now]] * d1[now];
	re += tg[fa[fa[now]]];
	return re * (sz[now] + 1);
}

uint Slot(int now) {
	uint re = g[now];
	re += ds[now] * tg[fa[now]];
	return re;
}

int main() {
	freopen("tree.in", "r", stdin);
	freopen("tree.out", "w", stdout);
	
	scanf("%d %d", &n, &Q);
	for (int i = 2; i <= n; i++) scanf("%d", &fa[i]), add(fa[i], i);
	for (int i = 1; i <= n; i++) scanf("%u", &w[i]);
	
	dfs0(1, 0); top[1] = 1; dfs1(1, 0);
	T.build(1, 1, n);
	
	for (int i = 1; i <= Q; i++) {
		int op; scanf("%d", &op);
		if (op == 1) {
			int x; uint v; scanf("%d %u", &x, &v);
			
			int now = x;
			while (now) {
				T.update(1, 1, n, dfn[top[now]], dfn[now], v * d2[x]);
				now = fa[top[now]];
			}
			tg[x] += v;
			
			g[x] += ds1[x] * v;
			now = x;
			while (now) {
				now = top[now];
				if (fa[now]) g[fa[now]] += d2[x] * v * (sz[now] + 1);
				now = fa[now];
			}
		}
		else {
			int x; scanf("%d", &x);
			printf("%u\n", Sone(x) - Sone(son[x]) - Slot(x));
		}
	}
	
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值