【luogu P5395】第二类斯特林数·行(容斥)(NTT)

第二类斯特林数·行

题目链接:luogu P5395

题目大意

第二类斯特林数是把 n 个不同元素放入 m 个相同的集合中,保证每个集合非空的方案数。
给你 n,对于 0~n 的每个 m 都求第二类斯特林数。

思路

考虑第二类斯特林数的性质,就是 n n n 个不同元素放入 m m m 个相同集合。

考虑通过它的容斥来列出一个式子。
那我们首先考虑吧把集合变成不同的,乘上 m ! m! m!
然后考虑枚举多少个不是空的:
m ! S ( n , m ) = ∑ i = 0 m ( − 1 ) m − i C ( m , i ) i n m!S(n,m)=\sum\limits_{i=0}^m(-1)^{m-i}C(m,i)i^n m!S(n,m)=i=0m(1)miC(m,i)in
i n i^n in 是每个元素放入哪个桶)

化简式子:
m ! S ( n , m ) = ∑ i = 0 m ( − 1 ) m − i m ! i ! ( m − i ) ! i n m!S(n,m)=\sum\limits_{i=0}^m(-1)^{m-i}\dfrac{m!}{i!(m-i)!}i^n m!S(n,m)=i=0m(1)mii!(mi)!m!in
m ! S ( n , m ) = m ! ∑ i = 0 m ( − 1 ) m − i ( m − i ) ! i n i ! m!S(n,m)=m!\sum\limits_{i=0}^m\dfrac{(-1)^{m-i}}{(m-i)!}\dfrac{i^n}{i!} m!S(n,m)=m!i=0m(mi)!(1)mii!in
S ( n , m ) = ∑ i = 0 m ( − 1 ) m − i ( m − i ) ! i n i ! S(n,m)=\sum\limits_{i=0}^m\dfrac{(-1)^{m-i}}{(m-i)!}\dfrac{i^n}{i!} S(n,m)=i=0m(mi)!(1)mii!in

那这就是一个卷积的形式,我们直接上 NTT 即可。
(它这个模数是可以 NTT 的)

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mo 167772161
#define ll long long
#define clr(f, x) memset(f, 0, sizeof(int) * (x))
#define cpy(f, g, x) memcpy(f, g, sizeof(int) * (x))

using namespace std;

const int N = 5e5 + 100;
const int pN = N * 8;
int n, jc[N], inv[N], invs[N], S[N];
int f[pN], g[pN];

int add(int x, int y) {return x + y >= mo ? x + y - mo : x + y;}
int dec(int x, int y) {return x < y ? x - y + mo : x - y;}
int mul(int x, int y) {return 1ll * x * y % mo;}
int ksm(int x, ll y) {
	int re = 1;
	while (y) {
		if (y & 1) re = mul(re, x);
		x = mul(x, x); y >>= 1;
	}
	return re;
}
int C(int n, int m) {
	if (n < 0 || m < 0 || n < m) return 0;
	return mul(mul(jc[n], invs[m]), invs[n - m]);
}

struct Poly {
	int an[pN], G = 3, Gv;
	
	void Init() {
		jc[0] = 1; for (int i = 1; i < N; i++) jc[i] = mul(jc[i - 1], i);
		inv[0] = inv[1] = 1; for (int i = 2; i < N; i++) inv[i] = mul(inv[mo % i], mo - mo / i);
		invs[0] = 1; for (int i = 1; i < N; i++) invs[i] = mul(invs[i - 1], inv[i]);
		Gv = ksm(G, mo - 2);
	}
	
	void get_an(int limit, int l_size) {
		for (int i = 0; i < limit; i++)
			an[i] = (an[i >> 1] >> 1) | ((i & 1) << (l_size - 1));
	}
	
	void NTT(int *f, int limit, int op) {
		for (int i = 0; i < limit; i++)
			if (i < an[i]) swap(f[i], f[an[i]]);
		for (int mid = 1; mid < limit; mid <<= 1) {
			int Wn = ksm(op == 1 ? G : Gv, (mo - 1) / (mid << 1));
			for (int j = 0, R = (mid << 1); j < limit; j += R)
				for (int w = 1, k = 0; k < mid; k++, w = mul(w, Wn)) {
					int x = f[j | k], y = mul(w, f[j | mid | k]);
					f[j | k] = add(x, y); f[j | mid | k] = dec(x, y);
				}
		}
		if (op == -1) {
			int limv = ksm(limit, mo - 2);
			for (int i = 0; i < limit; i++) f[i] = mul(f[i], limv);
		}
	}
	
	void px(int *f, int *g, int limit) {
		for (int i = 0; i < limit; i++)
			f[i] = mul(f[i], g[i]);
	}
	
	void times(int *f, int *g, int n, int m, int T) {
		int limit = 1, l_size = 0; while (limit < n + m) limit <<= 1, l_size++;
		get_an(limit, l_size);
		static int tmp[pN]; clr(f + n, limit - n); cpy(tmp, g, m); clr(tmp + m, limit - m);
		NTT(f, limit, 1); NTT(tmp, limit, 1); px(f, tmp, limit); NTT(f, limit, -1);
		clr(f + T, limit - 1); clr(tmp, limit);
	}
}P;

void getS() {
	for (int i = 0; i <= n; i++) {
		f[i] = mul((i & 1) ? mo - 1 : 1, invs[i]);
		g[i] = mul(ksm(i, n), invs[i]);
	}
	P.times(f, g, n + 1, n + 1, n + 1);
	for (int i = 0; i <= n; i++)
		S[i] = f[i];
}

int main() {
	P.Init();
	scanf("%d %d", &n);
	
	getS();
	for (int i = 0; i <= n; i++) printf("%d ", S[i]);
	
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值