二进制数
题目链接:YBT2023寒假Day14 B
题目大意
问你 [A,B] 之间有多少个整数,满足它二进制表示下(不要前导 0)子串 00,01,10,11 个数分别是 a,b,c,d。
其中 A,B<=2^{100000},a+b+c+d<=100000
思路
首先转成求
[
1
,
x
]
[1,x]
[1,x] 的答案。
然后考虑数位 DP,考虑当你发现可以任取了之后,有多少方案。
那么我们假设任取的时候,你还剩下
a
,
b
,
c
,
d
a,b,c,d
a,b,c,d 个
00
,
01
,
10
,
11
00,01,10,11
00,01,10,11 要选。
然后因为你要出现任取,那这一位一定上界是
1
1
1 你选了
0
0
0,所以肯定是从
0
0
0 开始。
然后你会发现,你在
0
0
0 的时候只能选
00
,
01
00,01
00,01,分别会走到
0
,
1
0,1
0,1,
1
1
1 的时候只能走
10
,
11
10,11
10,11,分别会走到
0
,
1
0,1
0,1,有点类似矩阵的转移。(矩阵快速幂一下好像也行?)
还有一个方法是观察到最后答案会形如:
0...01...10...0......
0...01...10...0......
0...01...10...0......
这样的,那会发现
00
,
11
00,11
00,11 都可以说是插入在
010101...
010101...
010101... 之中的。
那根据
b
,
c
b,c
b,c 的数量,我们可以确定这个
01
01
01 交替串的长度以及最后的结尾。
然后
01
01
01 之间可以放
00
00
00,
10
10
10 之间可以放
11
11
11,如果最后一个
1
1
1 后面可以放
11
11
11,如果最后一个是
0
0
0 后面可以放
00
00
00。
那就是这些位置里面可以放东西,那就是若干个东西放入若干个桶中,直接上插板法即可。
要注意如果一直不能任取最后得到的是 x x x,要单独判一次(别问我为啥单独讲,寄)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define mo 1000000007
using namespace std;
const int N = 4e5 + 100;
int A[N], B[N], a, b, c, d, an, bn;
ll jc[N], inv[N], invs[N];
char s[N];
ll C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return jc[n] * invs[m] % mo * invs[n - m] % mo;
}
void dec1() {
int now = 1;
while (!A[now]) now++;
A[now] = 0;
for (int i = now - 1; i >= 1; i--) A[i] = 1;
if (now == an) an--;
}
ll slove(int *F, int n) {
if (a + b + c + d + 1 == 1) {
if (n == 1) return F[1] + 1;
return 2;
}
int aa = a, bb = b, cc = c, dd = d; ll ans = 0;
for (int i = n - 1; i >= 1; i--) {
if (c > b + 1 || b > c) continue;
if (a + b + c + d + 1 != i) continue;
// if (b == c) {
// //d:b+1 λÖÃ
// //a:c λÖÃ
// }
// if (b + 1 == c) {
// //d:b+1 λÖÃ
// //a:c λÖÃ
// }
(ans += C(b + 1 + d - 1, b + 1 - 1) * C(c + a - 1, c - 1) % mo) %= mo;
}
for (int i = n - 1; i >= 1; i--) {
if (!F[i]) {
if (F[i + 1]) cc--;
else aa--;
continue;
}
if (F[i + 1]) cc--;
else aa--;
if (aa + bb + cc + dd + 1 == i) {
if (cc == bb || cc + 1 == bb) {
(ans += C(cc + 1 + aa - 1, cc + 1 - 1) * C(bb + dd - 1, bb - 1) % mo) %= mo;
}
}
if (F[i + 1]) cc++;
else aa++;
if (F[i + 1]) dd--;
else bb--;
}
if (!aa && !bb && !cc && !dd) (ans += 1) %= mo;//记得最后如果所有相等也要比较
return ans;
}
int main() {
// freopen("sjs.txt", "r", stdin);
// freopen("my.txt", "w", stdout);
freopen("binary.in", "r", stdin);
freopen("binary.out", "w", stdout);
jc[0] = 1; for (int i = 1; i < N; i++) jc[i] = jc[i - 1] * i % mo;
inv[0] = inv[1] = 1; for (int i = 2; i < N; i++) inv[i] = inv[mo % i] * (mo - mo / i) % mo;
invs[0] = 1; for (int i = 1; i < N; i++) invs[i] = invs[i - 1] * inv[i] % mo;
scanf("%s", s + 1); an = strlen(s + 1);
for (int i = 1; i <= an; i++) A[i] = s[i] - '0'; reverse(A + 1, A + an + 1);
scanf("%s", s + 1); bn = strlen(s + 1);
for (int i = 1; i <= bn; i++) B[i] = s[i] - '0'; reverse(B + 1, B + bn + 1);
scanf("%d %d %d %d", &a, &b, &c, &d);
dec1();
printf("%lld", (slove(B, bn) - slove(A, an) + mo) % mo);
return 0;
}