【luogu CF1098D】Eels(结论)

Eels

题目链接:luogu CF1098D

题目大意

有一个可重集,每次操作会放进去一个数或者取出一个数。
然后每次操作完之后,问你对这个集合进行操作,每次选出两个数 a,b 加起来合并回去,直到集合中只剩一个数,要你最小化 2a<b 或 2b<a 的次数。
每次输出这个最小次数。

思路

有一个简单的贪心结论是每次选最小的两个合并。
感性理解就是你如果要贡献了,那迟早都要贡献,你这里加了说不定他就够大了就不一定在下一次贡献了。

接下来发现你这样这题好像还不能过。
于是考虑再推一点结论,发现它贡献的条件我们还没有用上。
于是考虑一下这个二倍,会发现一个什么问题,就是如果你某一次要贡献。
比如贡献的形式是 x , y x,y x,y,其中 2 x < y 2x<y 2x<y,那你其实会发现这个 y y y 是不可能是被合并出来的,它一定是原生的。

那如果它能被合出来 y 1 + y 2 = y ( y 1 ⩽ y 2 ) y_1+y_2=y(y_1\leqslant y_2) y1+y2=y(y1y2),那我们每次合最小的两个,那 y 1 , y 2 y_1,y_2 y1,y2 已经被合了 x x x 还在,那一定有 y 1 ⩽ y 2 ⩽ x y_1\leqslant y_2\leqslant x y1y2x,那 y 1 + y 2 ⩽ 2 x y_1+y_2\leqslant 2x y1+y22x y ⩽ 2 x y\leqslant 2x y2x y > 2 x y>2x y>2x 矛盾。
也不难看出,当 k x < y kx<y kx<y 为条件的时候,两个推出来的条件分别是 y ⩽ 2 x y\leqslant 2x y2x y > k x y>kx y>kx,也就是当 k ⩾ 2 k\geqslant 2 k2 的时候其实这个结论都成立,这也是这个条件成立的充要条件。

那这个说明什么,你如果要出现贡献,大的一定是原生的,而每次你都会合最小的两个,那要让大的是原生的也就是它是现在第二小的,而且比它大的里面不应该有非原生的。
因为有的话,就说明它肯定没有最小的二倍。
那最小的肯定就是原生的里面比他小的和。
那条件就是:(先把数组排序,在让 s u m i = ∑ x = 1 i a x sum_i=\sum\limits_{x=1}^ia_x sumi=x=1iax
∑ i = 1 n [ 2 s u m i − 1 < a i ] \sum\limits_{i=1}^n[2sum_{i-1}<a_i] i=1n[2sumi1<ai]


那我们要做的就是在插入数和删去数的过程中维护这个东西的值。
会发现问题在于每个地方都要判断一次,但是一个显然的事情是每一次是上次的两倍以上,那每次这个值都会翻倍,那就只会有至多 log ⁡ \log log 次贡献。
那你会发现如果你按最高位的存在来分(我们对于每个维护一个 set),那你会发现每一组至多只有一个贡献,那我们需要判断的次数也缩小到了 log ⁡ \log log 级别,就可以了。

代码

#include<set>
#include<cstdio>
#define ll long long

using namespace std;

int n, ans;
multiset <int> s[36];
ll sum[36];

int getk(int x) {
	int re = 0;
	while (x > 1) re++, x >>= 1;
	return re;
}

int main() {
	scanf("%d", &n);
	while (n--) {
		char c = getchar(); while (c != '+' && c != '-') c = getchar();
		int x; scanf("%d", &x);
		int k = getk(x);
		if (c == '-') {
			s[k].erase(s[k].find(x));
			sum[k] -= x;
		}
		if (c == '+') {
			s[k].insert(x);
			sum[k] += x;
		}
		ll Sum = 0; ans = 0;
		for (int i = 0; i <= 30; i++)
			if (s[i].size()) {
				ans += s[i].size();
				if ((*s[i].begin()) > 2 * Sum) ans--;
				Sum += sum[i];
			}
		printf("%d\n", ans);
	} 
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值